707 resultados para Advection


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time-series sediment traps were deployed at 4 depths in the eastern Fram Strait from July 2007 to June 2008 to investigate variations in the magnitude and composition of the sinking particulate matter from upper waters to the seafloor. Sediment traps were deployed at 196 m in the Atlantic Water layer, at 1296 and 2364 m in the intermediate and deep waters, and at 2430 m on a benthic lander in the near-bottom layer. Fluxes of total particulate matter, particulate organic carbon, particulate organic nitrogen, biogenic matter, lithogenic matter, biogenic particulate silica, calcium carbonate, dominant phytoplankton cells, and zooplankton fecal pellets increased with depth, indicating the importance of lateral advection on fluxes in the deep Fram Strait. The lateral supply of particulate matter was further supported by the constant fluxes of biomarkers such as brassicasterol, alkenones, campesterol, beta-sitosterol, and IP25 at all depths sampled. However, enhanced fluxes of diatoms and appendicularian fecal pellets from the upper waters to the seafloor in the presence of ice during spring indicated the rapid export (15-35 days) of locally-produced large particles that likely contributed most of the food supply to the benthic communities. These results show that lateral supply and downward fluxes are both important processes influencing the transport of particulate matter to the seafloor in the deep eastern Fram Strait, and that particulate matter size dictates the prevailing sinking process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have suggested that the marine contribution of methane from shallow regions and melting marine terminating glaciers may have been underestimated. Here we report on methane sources and potential sinks associated with methane seeps in Cumberland Bay, South Georgia's largest fjord system. The average organic carbon content in the upper 8 meters of the sediment is around 0.65 wt.%; this observation combined with Parasound data suggest that the methane gas accumulations probably originate from peat-bearing sediments currently located several tens of meters below the seafloor. Only one of our cores indicates upward advection; instead most of the methane is transported via diffusion. Sulfate and methane flux estimates indicate that a large fraction of methane is consumed by anaerobic oxidation of methane (AOM). Carbon cycling at the sulfate-methane transition (SMT) results in a marked fractionation of the d13C-CH4 from an estimated source value of -65 per mil to a value as low as -96 per mil just below the SMT. Methane concentrations in sediments are high, especially close to the seepage sites (~40 mM); however, concentrations in the water column are relatively low (max. 58 nM) and can be observed only close to the seafloor. Methane is trapped in the lowermost water mass, however, measured microbial oxidation rates reveal very low activity with an average turnover of 3.1 years. We therefore infer that methane must be transported out of the bay in the bottom water layer. A mean sea-air flux of only 0.005 nM/m²/s confirms that almost no methane reaches the atmosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ocean Drilling Program Leg 126 sites may be classified into two categories depending on the presence (Group I: Sites 787, 792, and 793) or absence (Group II: Sites 788, 790, and 791) of steep concentration gradients. Shipboard X-ray diffraction analyses of bulk sediments from Group I sites revealed the presence of a number of diagenetic minerals (some of which are incompatible), but no systematic diagenetic zonation. The results of the chemical analyses of the pore waters from Group I have been used to estimate the activities of dissolved species. Thermodynamic analyses of the composition of the pore waters and the stability of authigenic minerals (gypsum, zeolites, feldspars, smectites, chlorites, and micas) show that the pore waters are close to equilibrium with most of the observed phases. Thus, only a small perturbation of the system (substitution in minerals and fluctuations in pore-water composition, in particular, in pH and SiO2 activity) will cause any of these phases to precipitate. Therefore, one would not expect mineralogical observations to show systematic vertical zonations at these sites. It is suggested that chlorites and high-temperature zeolites are not diagenetic sensu stricto, but were eroded from volcaniclastic highs. The absence of concentration gradients at the Group II sites has been analyzed in terms of reaction kinetics, hydrothermal advection, and temperature distribution. The absence of diagenetic imprints on the pore-water concentration profiles at these sites is probably caused by the slow nucleation of silica phases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In large parts of the Southern Ocean, primary production is limited due to shortage of iron (Fe). We measured vertical Fe profiles in the western Weddell Sea, Weddell-Scotia Confluence, and Antarctic Circumpolar Current (ACC), showing that Fe is derived from benthic Fe diffusion and sediment resuspension in areas characterized by high turbulence due to rugged bottom topography. Our data together with literature data reveal an exponential decrease of dissolved Fe (DFe) concentrations with increasing distance from the continental shelves of the Antarctic Peninsula and the western Weddell Sea. This decrease can be observed 3500 km eastward of the Antarctic Peninsula area, downstream the ACC. We estimated DFe summer fluxes into the upper mixed layer of the Atlantic sector of the Southern Ocean and found that horizontal advection dominates DFe supply, representing 54 ± 15% of the total flux, with significant vertical advection second most important at 29 ± 13%. Horizontal and vertical diffusion are weak with 1 ± 2% and 1 ± 1%, respectively. The atmospheric contribution is insignificant close to the Antarctic continent but increases to 15 ± 10% in the remotest waters (>1500 km offshore) of the ACC. Translating Southern Ocean carbon fixation by primary producers into biogenic Fe fixation shows a twofold excess of new DFe input close to the Antarctic continent and a one-third shortage in the open ocean. Fe recycling, with an estimated 'fe' ratio of 0.59, is the likely pathway to balance new DFe supply and Fe fixation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated gas hydrate in situ inventories as well as the composition and principal transport mechanisms of fluids expelled at the Amsterdam mud volcano (AMV; 2,025 m water depth) in the Eastern Mediterranean Sea. Pressure coring (the only technique preventing hydrates from decomposition during recovery) was used for the quantification of light hydrocarbons in near-surface deposits. The cores (up to 2.5 m in length) were retrieved with an autoclave piston corer, and served for analyses of gas quantities and compositions, and pore-water chemistry. For comparison, gravity cores from sites at the summit and beyond the AMV were analyzed. A prevalence of thermogenic light hydrocarbons was inferred from average C1/C2+ ratios <35 and d13C-CH4 values of -50.6 per mil. Gas venting from the seafloor indicated methane oversaturation, and volumetric gas-sediment ratios of up to 17.0 in pressure cores taken from the center demonstrated hydrate presence at the time of sampling. Relative enrichments in ethane, propane, and iso-butane in gas released from pressure cores, and from an intact hydrate piece compared to venting gas suggest incipient crystallization of hydrate structure II (sII). Nonetheless, the co-existence of sI hydrate can not be excluded from our dataset. Hydrates fill up to 16.7% of pore volume within the sediment interval between the base of the sulfate zone and the maximum sampling depth at the summit. The concave-down shapes of pore-water concentration profiles recorded in the center indicate the influence of upward-directed advection of low-salinity fluids/fluidized mud. Furthermore, the SO42- and Ba2+ pore-water profiles in the central part of the AMV demonstrate that sulfate reduction driven by the anaerobic oxidation of methane is complete at depths between 30 cm and 70 cm below seafloor. Our results indicate that methane oversaturation, high hydrostatic pressure, and elevated pore-water activity caused by low salinity promote fixing of considerable proportions of light hydrocarbons in shallow hydrates even at the summit of the AMV, and possibly also of other MVs in the region. Depending on their crystallographic structure, however, hydrates will already decompose and release hydrocarbon masses if sediment temperatures exceed ca. 19.3°C and 21.0°C, respectively. Based on observations from other mud volcanoes, the common occurrence of such temperatures induced by heat flux from below into the immediate subsurface appears likely for the AMV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sixty surface sediment samples from the eastern South Atlantic Ocean including the Walvis Ridge, the Angola and Cape basins, and the Southwest African continental margin were analysed for their benthic foraminiferal content to unravel faunal distribution patterns and ecological preferences. Live (stained with Rose Bengal) and dead faunas were counted separately and then each grouped by Q-mode principal component analysis into seven principal faunal end-members. Then, multiple regression technique was used to correlate Recent assemblages with available environmental variables and to finally differentiate between four principal groups of environmental agents acting upon the generation of benthic foraminiferal assemblages: (1) seasonality of food supply and organic carbon flux rates, together with oxygen content in the pore and bottom waters; (2) lateral advection of deep-water masses; (3) bottom water carbonate corrosiveness; and (4) energetic state at the benthic boundary layer and grain size composition of the substrate. Food supply and corresponding dissolved oxygen contents in the pore and bottom waters turned out to be the most important factors which control the distribution pattern of the Recent benthic foraminifera. At the continental margin, in the zone of coastal upwelling and its mixing area, benthic foraminiferal assemblages are dominated by stenobathic high-productivity faunas, characterized by elevated standing stocks, low diversities and a large number of endobenthic living species. At the continental shelf and upper continental slope the live assemblages are characterized by Rectuvigerina cylindrica, Uvigerina peregrina s.1., Uvigerina auberiana and Rhizammina spp. while the dead assemblages are characterized by Cassidulina laevigata, Bolivina dilatata, Bulimina costata and B. mexicana. At the lower continental slope strong influence of high organic matter fluxes on the species composition is restricted to the area off the Cunene river mouth, where the live assemblage is dominated by Uvigerina peregrina s.1., the corresponding dead assemblage by Melonis barleeanum and M. zaandamae. In the adjacent areas of the lower continental slope the biocoenosis is characterized by Reophax bilocularis, and Epistominella exigua which becomes dominant in the corresponding dead assemblage. At the Walvis Ridge and in the abyssal Angola and Cape basins, where organic matter fluxes are low and highly seasonal, benthic foraminiferal assemblages reflect both the oligotrophic situation and the deep and bottom water mass configuration. The top and flanks of the Walvis Ridge are inhabited by the Rhizammina, Psammosphaera and R. bilocularis live assemblages, the corresponding dead assemblages are dominated by G. subglobosa on the ridge top and E. exigua on the flanks. Within the highly diverse E. exigua dead assemblage several associated epibenthic species coincide with the core of NADW between about 1600 and 3700 m water depth. These species include Osangularia culter, Cibicidoides kullenbergi, Melonis pompilioides, Bolivinita pseudothalmanni and Bulimina alazanensis. The assemblages of the abyssal Cape and Angola basins are characterized by Nuttallides umbonifer and a high proportion of agglutinated species. These species are adapted to very low organic matter fluxes and a carbonate corrosive environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In contrast to the wide range of studies carried out in temperate and high-latitude oceanic regions, only a few studies have focused on recent and Holocene organic-walled dinoflagellate cyst assemblages from the tropics. This information is, however, essential for fully understanding the ability of species to adapt to different oceanographic regimes, and ultimately their potential application to local and regional palaeoenvironmental and palaeoceanographic reconstructions. Surface sediment samples of the western equatorial Atlantic Ocean north of Brazil, an area greatly influenced by Amazon River discharge waters, were therefore analysed in detail for their organic-walled dinoflagellate cyst content. A diverse association of 43 taxa was identified, and large differences in cyst distribution were observed. The cyst thanatocoenosis in bottom sediments reflects the seasonal advection of Amazon River discharge water through the Guyana Current and the North Equatorial Countercurrent well into the North Atlantic. To establish potential links between cyst distribution and the environmental conditions of the upper water column, distribution patterns were compared with mean temperature, salinity, density and stratification gradients within the upper water column (0-100 m) over different times of the year, using correspondence analysis and canonical correspondence analysis. The analyses show that differences in these parameters only play a subordinate role in determining species distribution. Instead, nutrient availability, or related factors, dominates the distribution pattern. The only possible indicators of slightly reduced salinities are Trinovantedinium applanatum and Lingulodinium machaerophorum. Four assemblage groups of cyst taxa with similar environmental affinities related to specific water masses/currents can be distinguished and have potential for palaeoenvironmental reconstruction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic matter origins are inferred from carbon isotope ratios (delta13C) in recent continental shelf sediments and major rivers from 465 locations from the north Bering-Chukchi-East Siberian-Beaufort Sea, Arctic Amerasia. Generally, there is a cross-shelf increase in delta13C, which is due to progressive increased contribution seaward of marine-derived organic carbon to surface sediments. This conclusion is supported by the correlations between sediment delta13C, OC/N, and delta15N. The sources of total organic carbon (TOC) to the Amerasian margin sediments are primarily from marine water-column phytoplankton and terrigenous C3 plants constituted of tundra taiga and angiosperms. In contrast to more temperate regions, the source of TOC from terrigenous C4 and CAM plants to the study area is probably insignificant because these plants do not exist in the northern high latitudes. The input of carbon to the northern Alaskan shelf sediments from nearshore kelp community (Laminaria solidungula) is generally insignificant as indicated by the absence of high sediment delta13C values (-16.5 to -13.6 per mil) which are typical of the macrophytes. Our study suggests that the isotopic composition of sediment TOC has potential application in reconstructing temporal changes in delivery and accumulation of organic matter resulting from glacial-interglacial changes in sea level and environments. Furthermore, recycling and advection of the extensive deposits of terrestrially derived organic matter from land, or the wide Amerasian margin, could be a mechanism for elevating total CO2 and pCO2 in the Arctic Basin halocline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multiproxy data set of an AMS radiocarbon dated 46 cm long sediment core from the continental margin off western Svalbard reveals multidecadal climatic variability during the past two millennia. Investigation of planktic and benthic stable isotopes, planktic foraminiferal fauna, and lithogenic parameters aims to unveil the Atlantic Water advection to the eastern Fram Strait by intensity, temperatures, and salinities. Atlantic Water has been continuously present at the site over the last 2,000 years. Superimposed on the increase in sea ice/icebergs, a strengthened intensity of Atlantic Water inflow and seasonal ice-free conditions were detected at ~ 1000 to 1200 AD, during the well-known Medieval Climate Anomaly (MCA). However, temperatures of the MCA never exceeded those of the 20th century. Since ~ 1400 AD significantly higher portions of ice rafted debris and high planktic foraminifer fluxes suggest that the site was located in the region of a seasonal highly fluctuating sea ice margin. A sharp reduction in planktic foraminifer fluxes around 800 AD and after 1730 AD indicates cool summer conditions with major influence of sea ice/icebergs. High amounts of the subpolar planktic foraminifer species Turborotalia quinqueloba in size fraction 150-250 µm indicate strengthened Atlantic Water inflow to the eastern Fram Strait already after ~ 1860 AD. Nevertheless surface conditions stayed cold well into the 20th century indicated by low planktic foraminiferal fluxes. Most likely at the beginning of the 20th century, cold conditions of the terminating Little Ice Age period persisted at the surface whereas warm and saline Atlantic Water already strengthened, hereby subsiding below the cold upper mixed layer. Surface sediments with high abundances of subpolar planktic foraminifers indicate a strong inflow of Atlantic Water providing seasonal ice-free conditions in the eastern Fram Strait during the last few decades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two high-resolution sediment cores from eastern Fram Strait have been investigated for sea subsurface and surface temperature variability during the Holocene (the past ca 12,000 years). The transfer function developed by Husum and Hald (2012) has been applied to sediment cores in order to reconstruct fluctuations of sea subsurface temperatures throughout the period. Additional biomarker and foraminiferal proxy data are used to elucidate variability between surface and subsurface water mass conditions, and to conclude on the Holocene climate and oceanographic variability on the West Spitsbergen continental margin. Results consistently reveal warm sea surface to subsurface temperatures of up to 6 °C until ca 5 cal ka BP, with maximum seawater temperatures around 10 cal ka BP, likely related to maximum July insolation occurring at that time. Maximum Atlantic Water (AW) advection occurred at surface and subsurface between 10.6 and 8.5 cal ka BP based on both foraminiferal and dinocyst temperature reconstructions. Probably, a less-stratified, ice-free, nutrient-rich surface ocean with strong AW advection prevailed in the eastern Fram Strait between 10 and 9 cal ka BP. Weakened AW contribution is found after ca 5 cal ka BP when subsurface temperatures strongly decrease with minimum values between ca 4 and 3 cal ka BP. Cold late Holocene conditions are furthermore supported by high planktic foraminifer shell fragmentation and high d18O values of the subpolar planktic foraminifer species Turborotalita quinqueloba. While IP25-associated indices as well as dinocyst data suggest a sustained cooling due to a decrease in early summer insolation and consequently sea-ice increase since about 7 cal ka BP in surface waters, planktic foraminiferal data including stable isotopes indicate a slight return of stronger subsurface AW influx since ca 3 cal ka BP. The observed decoupling of surface and subsurface waters during the later Holocene is most likely attributed to a strong pycnocline layer separating cold sea-ice fed surface waters from enhanced subsurface AW advection. This may be related to changes in North Atlantic subpolar versus subtropical gyre activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface samples, mostly from abyssal sediments of the South Atlantic, from parts of the equatorial Atlantic, and of the Antarctic Ocean, were investigated for clay content and clay mineral composition. Maps of relative clay mineral content were compiled, which improve previous maps by showing more details, especially at high latitudes. Large-scale relations regarding the origin and transport paths of detrital clay are revealed. High smectite concentrations are observed in abyssal regions, primarily derived from southernmost South America and from minor sources in Southwest Africa. Near submarine volcanoes of the Antarctic Ocean (South Sandwich, Bouvet Island) smectite contents exhibit distinct maxima, which is ascribed to the weathering of altered basalts and volcanic glasses. The illite distribution can be subdivided into five major zones including two maxima revealing both South African and Antarctic sources. A particularly high amount of Mg- and Fe-rich illites are observed close to East Antarctica. They are derived from biotite-bearing crystalline rocks and transported to the west by the East Antarctic Coastal Current. Chiorite and well-crystallized dioctaedral illite are typical minerals enriched within the Subantarctic and Polarfrontal-Zone but of minor importance off East Antarctica. Kaolinite dominates the clay mineral assemblage at low latitudes, where the continental source rocks (West Africa, Brazil) are mainly affected by intensive chemical weathering. Surprisingly, a slight increase of kaolinite is observed in the Enderby Basin and near the Filchner-Ronne Ice shelf. The investigated area can be subdivided into ten, large-scale clay facies zones with characteristic possible source regions and transport paths. Clay mineral assemblages of the largest part of the South Atlantic, especially of the western basins are dominated by chlorite and illite derived from the Antarctic Peninsula and southernmost South America and supported by advection within the Circumantarctic Deep Water flow. In contrast, the East Antarctic provinces are relatively small. Assemblages of the eastern basins north of 30°S are strongly influenced by African sources, controlled by weathering regimes on land and by a complex interaction of wind, river and deep ocean transport. The strong gradient in clay mineral composition at the Brazilian slope indicate a relatively low contribution of tropically derived assemblages to the western basins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to test the sensitivity of marine primary productivity in the midlatitude open ocean North Atlantic to changes in the Atlantic Meridional Overturning Circulation (AMOC), we investigated two spliced sediment cores from a site south of the Azores Islands at the northern rim of the North Atlantic subtropical gyre. For this purpose we analyzed coccolithophore assemblages, diatom abundances, alkenones and conducted X-ray fluorescence (XRF) core scanning. During times of reduced AMOC, especially during Heinrich event 1 (H1) and the Younger Dryas, we observe a strong increase in productivity as evidenced by high coccolith accumulation rates, high alkenone concentrations/accumulation rates, high Ba/Ti-ratios, high abundances of diatoms and low abundances ofF. profunda. The increased productivity is partly caused by a more southern position of the Azores Front (AzF), and hence by a less northward extension of the subtropical gyre, as deduced from high abundances of the temperate coccolithophore species G. muellerae and low abundances of subtropical species (Oolithotus spp., Umbellosphaera spp., Umbilicosphaeraspp.). However, to explain the full range of the observed productivity increase, other factors like increased westerly winds and advection of nutrient-rich surface waters have also to be considered. Because this pattern can also be observed in other sediment cores from the midlatitude North Atlantic, we propose that during times of reduced AMOC there has been a band of strongly increased productivity across the North Atlantic at the northern rim of the contracted subtropical gyre, which partly counteracts the decreased organic carbon pump in the high northern latitudes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Arctic is responding more rapidly to global warming than most other areas on our planet. Northward flowing Atlantic Water is the major means of heat advection towards the Arctic and strongly affects the sea ice distribution. Records of its natural variability are critical for the understanding of feedback mechanisms and the future of the Arctic climate system, but continuous historical records reach back only ~150 years. Here, we present a multidecadal scale record of ocean temperature variations during the last 2000 years, derived from marine sediments off Western Svalbard (79°N). We find that early-21st-century temperatures of Atlantic Water entering the Arctic Ocean are unprecedented over the past 2000 years and are presumably linked to the Arctic Amplification of global warming.