864 resultados para Adaptive Immunity
Resumo:
The attenuated vaccine against Schistosoma mansoni induces Th1-mediated protective immunity and we have sought to identify a role for IL-12 in this model. Elevated levels of IL-12 (p40 mRNA) were detected in the lymph nodes (LN) and the lungs of vaccinated mice, whilst treatment of vaccinated mice with anti-IL-12 antibodies decreased the ratio of IFNg:IL-4 secreted by in vitro-cultured LN cells. However, there was only marginal abrogation of the level of resistance in these mice. Soluble antigens from the lung-stage of the parasite (SLAP) appeared to be efficient stimulators of IFNg and IL-12 secretion. These antigens when used to immunise mice in conjunction with IL-12 as an adjuvant, elicited a polarised Th1 response with abundant IFNg secretion but no IL-4. This immunisation regime also induced significant protection against reinfection, whereas inoculation of mice with SLAP alone did not. The induction of a dominant Th1 response using SLAP + IL-12 probably operates via IFNg production by natural killer (NK) cells stimulated by IL-12, since in vivo ablation of NK cells using anti-NK1.1 antibody reduced CD4+-dependent IFNg production from cultured LN cells by over 97%. Nevertheless, in mice with a genetic disruption of the IFNg receptor, administration of SLAP + IL-12 induced levels of IFNg equal to those in wild-type mice, thus showing that in this model IL-12 can directly prime T cells independent of IFNg. Clearly, IL-12 has a critical role in protective immunity to schistosomes and it may aid the development of an effective vaccine against this disease
Resumo:
This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.
Resumo:
Ecological specialization in resource utilization has various facades ranging from nutritional resources via host use of parasites or phytophagous insects to local adaptation in different habitats. Therefore, the evolution of specialization affects the evolution of most other traits, which makes it one of the core issues in the theory of evolution. Hence, the evolution of specialization has gained enormous amounts of research interest, starting already from Darwin’s Origin of species in 1859. Vast majority of the theoretical studies has, however, focused on the mathematically most simple case with well-mixed populations and equilibrium dynamics. This thesis explores the possibilities to extend the evolutionary analysis of resource usage to spatially heterogeneous metapopulation models and to models with non-equilibrium dynamics. These extensions are enabled by the recent advances in the field of adaptive dynamics, which allows for a mechanistic derivation of the invasion-fitness function based on the ecological dynamics. In the evolutionary analyses, special focus is set to the case with two substitutable renewable resources. In this case, the most striking questions are, whether a generalist species is able to coexist with the two specialist species, and can such trimorphic coexistence be attained through natural selection starting from a monomorphic population. This is shown possible both due to spatial heterogeneity and due to non-equilibrium dynamics. In addition, it is shown that chaotic dynamics may sometimes inflict evolutionary suicide or cyclic evolutionary dynamics. Moreover, the relations between various ecological parameters and evolutionary dynamics are investigated. Especially, the relation between specialization and dispersal propensity turns out to be counter-intuitively non-monotonous. This observation served as inspiration to the analysis of joint evolution of dispersal and specialization, which may provide the most natural explanation to the observed coexistence of specialist and generalist species.
Resumo:
Leishmaniasis is a disease caused by protozoa of the genus Leishmania, and visceral leishmaniasis is a form in which the inner organs are affected. Since knowledge about immunity in experimental visceral leishmaniasis is poor, we present here a review on immunity and immunosuppression in experimental visceral leishmaniasis in mouse and hamster models. We show the complexity of the mechanisms involved and differences when compared with the cutaneous form of leishmaniasis. Resistance in visceral leishmaniasis involves both CD4+ and CD8+ T cells, and interleukin (IL)-2, interferon (IFN)- gamma, and IL-12, the latter in a mechanism independent of IFN- gamma and linked to transforming growth factor (TGF)-ß production. Susceptibility involves IL-10 but not IL-4, and B cells. In immune animals, upon re-infection, the elements involved in resistance are different, i.e., CD8+ T cells and IL-2. Since one of the immunopathological consequences of active visceral leishmaniasis in humans is suppression of T-cell responses, many studies have been conducted using experimental models. Immunosuppression is mainly Leishmania antigen specific, and T cells, Th2 cells and adherent antigen-presenting cells have been shown to be involved. Interactions of the co-stimulatory molecule family B7-CTLA-4 leading to increased level of TGF-ß as well as apoptosis of CD4+ T cells and inhibition of macrophage apoptosis by Leishmania infection are other components participating in immunosuppression. A better understanding of this complex immune response and the mechanisms of immunosuppression in experimental visceral leishmaniasis will contribute to the study of human disease and to vaccine development.
Resumo:
Epidemiological data regarding tetanus and diphtheria immunity in elderly people in Brazil are scarce. During the First National Immunization Campaign for the Elderly in Brazil in April 1999, 98 individuals (median age: 84 years) received one tetanus-dyphtheria (Td) vaccine dose (Butantan Institute, lot number 9808079/G). Inclusion criteria were elderly individuals without a history of severe immunosuppressive disease, acute infectious disease or use of immunomodulators. Blood samples were collected immediately before the vaccine and 30 days later. Serum was separated and stored at -20ºC until analysis. Tetanus and diphtheria antibodies were measured by the double-antigen ELISA test. Tetanus and diphtheria antibody concentrations lower than 0.01 IU/mL were considered to indicate the absence of protection, between 0.01 and 0.09 IU/mL were considered to indicate basic immunity, and values of 0.1 IU/mL or higher were considered to indicate full protection. Before vaccination, 18% of the individuals were susceptible to diphtheria and 94% were susceptible to tetanus. After one Td dose, 78% became fully immune to diphtheria, 13% attained basic immunity, and 9% were still susceptible to the disease. In contrast, 79% remained susceptible to tetanus, 4% had basic immunity and 17% were fully immune. Although one Td dose increases immunity to diphtheria in many elderly people who live in Brazil, a complete vaccination series appears to be necessary for the prevention of tetanus.
Resumo:
Tetanus and diphtheria vaccines are of special concern in adolescents because boosters are necessary for adequate maintenance of protection and are often omitted. We assessed serum levels of tetanus and diphtheria antibodies in adolescents and their association with vaccination status. From May to October 2001, we evaluated the vaccination records of 208 adolescents aged 10 to 20 years in São Paulo, Brazil. Antibodies to tetanus and diphtheria were detected using double-antigen ELISA and vaccination records were analyzed according to the guidelines of the Brazilian National Immunization Program. All adolescents had received complete primary vaccinations against tetanus and diphtheria, but 23.1% of them had not received a booster dose in the last 10 years. All adolescents were immune to tetanus and 88.9% were fully protected (antibodies ³0.1 IU/mL). One individual (0.5%) was non-immune to diphtheria and 86% were fully protected against the disease. Adolescents with up-to-date vaccination records had higher antibody levels than those with not up-to-date records for tetanus (0.763 vs 0.239 IU/mL, t-test: P < 0.0001) and diphtheria (0.366 vs 0.233 IU/mL, t-test: P = 0.014). Full immunity against tetanus (antibodies ³0.1 IU/mL) was higher among individuals with up-to-date vaccination (93.1%) when compared to those with not up-to-date records (75%, Fisher's exact test: P = 0.001). All adolescents had received basic immunization in childhood and were protected against tetanus and diphtheria. However, these data indicate that more emphasis should be placed on the tetanus-diphtheria booster in order to avoid a decay in antibody levels.
Resumo:
The effect of an aversive stimulus represented by contact with a hot plate on the heart rate of Megalobulimus mogianensis was evaluated with electrocardiogram recording in intact snails (N = 8). All stimulated animals showed an increase in heart rate, with mean values ranging from 35.6 ± 1.2 (basal heart rate) to 43.8 ± 0.9 bpm (post-stimulation heart rate). The cardioacceleration was followed by gradual recovery of the basal heart rate, with mean recovery times varying from 4.3 ± 0.3 to 5.8 ± 0.6 min. Repetition of the stimulus did not affect the magnitude of variation nor did it influence the basal heart rate recovery time. To investigate the role of the cardiac nerve in mediating the heart rate alterations induced by the aversive stimulus, denervated (N = 8) and sham-operated (N = 8) animals were also tested. Although the aversive stimulus caused the heart rate to increase significantly in both experimental groups, the mean increase in heart rate in denervated animals (4.4 ± 0.4 bpm) was 57% of the value obtained in sham-operated animals (7.7 ± 1.3 bpm), indicating that the cardiac nerve is responsible for 43% of the cardioacceleration induced by the aversive stimulus. The cardioacceleration observed in denervated snails may be due to an increase in venous return promoted by the intense muscular activity associated with the withdrawal response. Humoral factors may also be involved. A probable delaying inhibitory effect of the cardiac nerve on the recuperation of the basal heart rate is suggested.
Resumo:
Androgenic anabolic steroid, physical exercise and stress induce cardiovascular adaptations including increased endothelial function. The present study investigated the effects of these conditions alone and in combination on the vascular responses of male Wistar rats. Exercise was started at 8 weeks of life (60-min swimming sessions 5 days per week for 8 weeks, while carrying a 5% body-weight load). One group received nandrolone (5 mg/kg, twice per week for 8 weeks, im). Acute immobilization stress (2 h) was induced immediately before the experimental protocol. Curves for noradrenaline were obtained for thoracic aorta, with and without endothelium from sedentary and trained rats, submitted or not to stress, treated or not with nandrolone. None of the procedures altered the vascular reactivity to noradrenaline in denuded aorta. In intact aorta, stress and exercise produced vascular adaptive responses characterized by endothelium-dependent hyporeactivity to noradrenaline. These conditions in combination did not potentiate the vascular adaptive response. Exercise-induced vascular adaptive response was abolished by nandrolone. In contrast, the aortal reactivity to noradrenaline of sedentary rats and the vascular adaptive response to stress of sedentary and trained rats were not affected by nandrolone. Maximum response for 7-10 rats/group (g): sedentary 3.8 ± 0.2 vs trained 3.0 ± 0.2*; sedentary/stress 2.7 ± 0.2 vs trained/stress 3.1 ± 0.1*; sedentary/nandrolone 3.6 ± 0.1 vs trained/nandrolone 3.8 ± 0.1; sedentary/stress/nandrolone 3.2 ± 0.1 vs trained/stress/nandrolone 2.5 ± 0.1*; *P < 0.05 compared to its respective control. Stress and physical exercise determine similar vascular adaptive response involving distinct mechanisms as indicated by the observation that only the physical exercise-induced adaptive response was abolished by nandrolone.
Resumo:
Recurrent aphthous ulcer (RAU) is an inflammatory condition of the oral mucosa characterized by painful, well-circumscribed, single or multiple round or ovoid ulcerations. The exact etiologic factor(s) of these ulcerations are not yet understood. The objective of this study was to evaluate inflammatory processes and free radical metabolism of 25 patients with RAUs compared to 25 healthy controls. The levels of malondialdehyde (MDA) and glutathione (GSH) were determined by high-performance liquid chromatography. Tumor necrosis factor-alpha (TNF-α), interleukin-2 (IL-2), IL-10, and IL-12 were determined by ELISA. Nitric oxide (NO), myeloperoxidase (MPO), total antioxidant status (TAS), and total oxidant status (TOS) levels were measured spectroscopically in serum. The levels of MDA, GSH, TNF-α, IL-2, IL-12, MPO, and TOS, and oxidative stress index (OSI) were higher, and the levels of NO, IL-10, and TAS were lower in patients with RAU than in controls. Statistical analysis showed that GSH, TNF-α, IL-2, IL-10, and OSI differed significantly in patients with RAU compared to controls. These parameters have important roles in oxidant/antioxidant defense.
Resumo:
The traditional concept that effector T helper (Th) responses are mediated by Th1/Th2 cell subtypes has been broadened by the recent demonstration of two new effector T helper cells, the IL-17 producing cells (Th17) and the follicular helper T cells (Tfh). These new subsets have many features in common, such as the ability to produce IL-21 and to express the IL-23 receptor (IL23R), the inducible co-stimulatory molecule ICOS, and the transcription factor c-Maf, all of them essential for expansion and establishment of the final pool of both subsets. Tfh cells differ from Th17 by their ability to home to B cell areas in secondary lymphoid tissue through interactions mediated by the chemokine receptor CXCR5 and its ligand CXCL13. These CXCR5+ CD4+ T cells are considered an effector T cell type specialized in B cell help, with a transcriptional profile distinct from Th1 and Th2 cells. The role of Tfh cells and its primary product, IL-21, on B-cell activation and differentiation is essential for humoral immunity against infectious agents. However, when deregulated, Tfh cells could represent an important mechanism contributing to exacerbated humoral response and autoantibody production in autoimmune diseases. This review highlights the importance of Tfh cells by focusing on their biology and differentiation processes in the context of normal immune response to infectious microorganisms and their role in the pathogenesis of autoimmune diseases.
Resumo:
This work presents synopsis of efficient strategies used in power managements for achieving the most economical power and energy consumption in multicore systems, FPGA and NoC Platforms. In this work, a practical approach was taken, in an effort to validate the significance of the proposed Adaptive Power Management Algorithm (APMA), proposed for system developed, for this thesis project. This system comprise arithmetic and logic unit, up and down counters, adder, state machine and multiplexer. The essence of carrying this project firstly, is to develop a system that will be used for this power management project. Secondly, to perform area and power synopsis of the system on these various scalable technology platforms, UMC 90nm nanotechnology 1.2v, UMC 90nm nanotechnology 1.32v and UMC 0.18 μmNanotechnology 1.80v, in order to examine the difference in area and power consumption of the system on the platforms. Thirdly, to explore various strategies that can be used to reducing system’s power consumption and to propose an adaptive power management algorithm that can be used to reduce the power consumption of the system. The strategies introduced in this work comprise Dynamic Voltage Frequency Scaling (DVFS) and task parallelism. After the system development, it was run on FPGA board, basically NoC Platforms and on these various technology platforms UMC 90nm nanotechnology1.2v, UMC 90nm nanotechnology 1.32v and UMC180 nm nanotechnology 1.80v, the system synthesis was successfully accomplished, the simulated result analysis shows that the system meets all functional requirements, the power consumption and the area utilization were recorded and analyzed in chapter 7 of this work. This work extensively reviewed various strategies for managing power consumption which were quantitative research works by many researchers and companies, it's a mixture of study analysis and experimented lab works, it condensed and presents the whole basic concepts of power management strategy from quality technical papers.
Resumo:
There exist several researches and applications about laser welding monitoring and parameter control but not a single one have been created for controlling of laser scribing processes. Laser scribing is considered to be very fast and accurate process and thus it would be necessary to develop accurate turning and monitoring system for such a process. This research focuses on finding out whether it would be possible to develop real-time adaptive control for ultra-fast laser scribing processes utilizing spectrometer online monitoring. The thesis accurately presents how control code for laser parameter tuning is developed using National Instrument's LabVIEW and how spectrometer is being utilized in online monitoring. Results are based on behavior of the control code and accuracy of the spectrometer monitoring when scribing different steel materials. Finally control code success is being evaluated and possible development ideas for future are presented.
Resumo:
Traumatic brain injury (TBI) often affects social adaptive functioning and these changes in social adaptability are usually associated with general damage to the frontal cortex. Recent evidence suggests that certain neurons within the orbitofrontal cortex appear to be specialized for the processing of faces and facial expressions. The orbitofrontal cortex also appears to be involved in self-initiated somatic activation to emotionally-charged stimuli. According to Somatic Marker Theory (Damasio, 1994), the reduced physiological activation fails to provide an individual with appropriate somatic cues to personally-relevant stimuli and this, in turn, may result in maladaptive behaviour. Given the susceptibility of the orbitofrontal cortex in TBI, it was hypothesized that impaired perception and reactivity to socially-relevant information might be responsible for some of the social difficulties encountered after TBL Fifteen persons who sustained a moderate to severe brain injury were compared to age and education matched Control participants. In the first study, both groups were presented with photographs of models displaying the major emotions and either asked to identify the emotions or simply view the faces passively. In a second study, participants were asked to select cards from decks that varied in terms of how much money could be won or lost. Those decks with higher losses were considered to be high-risk decks. Electrodermal activity was measured concurrently in both situations. Relative to Controls, TBI participants were found to have difficulty identifying expressions of surprise, sadness, anger, and fear. TBI persons were also found to be under-reactive, as measured by electrodermal activity, while passively viewing slides of negative expressions. No group difference,in reactivity to high-risk card decks was observed. The ability to identify emotions in the face and electrodermal reactivity to faces and to high-risk decks in the card game were examined in relationship to social monitoring and empathy as described by family members or friends on the Brock Adaptive Functioning Questionnaire (BAFQ). Difficulties identifying negative expressions (i.e., sadness, anger, fear, and disgust) predicted problems in monitoring social situations. As well, a modest relationship was observed between hypo-arousal to negative faces and problems with social monitoring. Finally, hypo-arousal in the anticipation of risk during the card game related to problems in empathy. In summary, these data are consistent with the view that alterations in the ability to perceive emotional expressions in the face and the disruption in arousal to personally-relevant information may be accounting for some of the difficulties in social adaptation often observed in persons who have sustained a TBI. Furthermore, these data provide modest support for Damasio's Somatic Marker Theory in that physiological reactivity to socially-relevant information has some value in predicting social function. Therefore, the assessment of TBI persons, particularly those with adaptive behavioural problems, should be expanded to determine whether alterations in perception and reactivity to socially-relevant stimuli have occurred. When this is the case, rehabilitative strategies aimed more specifically at these difficulties should be considered.