765 resultados para Acoustic Sensor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Habitat heterogeneity and use of physical and acoustic space in anuran communities in Southeastern Brazil. We intended to verify if structural and physiognomical characteristics of water bodies influence on the degree of overlap among calling sites of 23 anurans species, if anuran species use different calling sites in different water bodies, and if there is some relationship between the degree of advertisement call (based on seven call features) and calling site differentiation. Then, we determined calling sites (based in four variables) and recorded the advertisement call for anuran species that occurred in 10 water bodies of northwestern São Paulo State. We also determined the environmental heterogeneity (based in four environmental descriptors) for each water body. Males of most species used similar calling sites in each water body, probably because of the high uniformity of the environment, as a consequence of agricultural impacts on edge vegetation of the studied ponds. Most species (18 out of 19 species) called from different sites in the ponds where they occurred, which can be associated with differences in horizontal and vertical distribution of vegetation in the studied ponds. From the 19 species analyzed, only males of Pseudopaludicola aff. saltica called in sites with the same characteristics in different ponds. Advertisement call of Hylidae species was more similar to each other than were Leiuperidae and Leptodactylidae among themselves. The aquatic/terrestrial anurans (Bufonidae, Leiuperidae, Leptodactylidae and Microhylidae) occupied similar calling sites but presented quite distinct advertisement calls, while Hylidae species presented an inverse pattern: a high similarity on advertisement call features but used different calling sites, which indicates a niche complementarity between physical (calling site use) and acoustic (advertisement call) space use. © 2008 Departamento de Ciências Biológicas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we demonstrate the use of holographic lithography for generation of large area plasmonic periodic structures. Submicrometric array of holes, with different periods and thickness, were recorded in gold films, in areas of about 1 cm2, with homogeneity similar to that of samples recorded by Focused Ion Beam. In order to check the plasmonic properties, we measured the transmission spectra of the samples. The spectra exhibit the typical surface plasmon resonances (SPR) in the infrared whose position and width present the expected behavior with the period of the array and film thickness. The shift of the peak position with the permittivity of the surrounding medium demonstrates the feasebility of the sample as large area sensors. © 2009 SPIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The continuous technological advances require materials with properties that conventional material cannot display. Material property combinations are being the focus to the development of composite materials, which are considered a multiphase material that exhibits properties of the constituent phases. One interesting material to be studied as sensing material is the composite made of ferroelectric ceramic and polymeric matrix as a two-phases composite material. In that case, the combinations properties intended are the high piezo and pyroelectric activities of the dense ceramic with the impact resistance, flexibility, formability and low densities of the polymer. Using the piezoelectric property of the composite film, it can be used to detect acoustic emission (AE), which is a transient elastic wave generated by sudden deformation in materials under stress. AE can be applied for evaluating the health of structures in a nondestructive way and without any lapse of time. The preliminary result indicates that the composite Pz34/PEEK can be used as sensing material for nondestructive evaluation. ©2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The operational details of the apparent electrical conductivity (ECa) sensor manufactured by Veris Technologies have been extensively documented in literature reports, but the geographical distribution of these research studies indicate a strong regional concentration in the US Mid-west and Southern states. The agricultural lands of these states diverge significantly to the soil conditions and water regime of irrigated land in the US South-western states such as Arizona where there is no previous research reports of the use of this particular sensor. The objectives of the present study were to analyze the performance of this sensor under the conditions of typical soils in irrigated farms of Central Arizona. We tested under static conditions the performance of the sensor on three soils of contrasting texture. Observations were collected as time series data as soil moisture changed from saturation to permanent wilting point. Observations were repeated at the hours of lowest and highest temperatures. In addition, this study included soil penetration resistance and salinity determinations. Preliminary results indicate that soil temperature of the upper layer caused the most dynamic change in the sensor output. The ECa curves of the three soil textures tested had well defined distinctive characteristics. Final multivariate analysis is pending.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA biosensors have gained increased attention over traditional diagnostic methods due to their fast and responsive operation and cost-effective design. The specificity of DNA biosensors relies on single-stranded oligonucleotide probes immobilized to a transduction platform. Here, we report the development of biosensors to detect the hippuricase gene (hipO) from Campylobacter jejuni using direct covalent coupling of thiol- and biotin-labeled single-stranded DNA (ssDNA) on both surface plasmon resonance (SPR) and diffraction optics technology (DOT, dotLab) transduction platforms. This is the first known report of the dotLab to detect targeted DNA. Application of 6-mercapto-1-hexanol as a spacer thiol for SPR gold surface created a self-assembled monolayer that removed unbound ssDNA and minimized non-specific detection. The detection limit of SPR sensors was shown to be 2.5 nM DNA while dotLab sensors demonstrated a slightly decreased detection limit of 5.0 nM (0.005 μM). It was possible to reuse the SPR sensor due to the negligible changes in sensor sensitivity (∼9.7 × 10 -7 ΔRU) and minimal damage to immobilized probes following use, whereas dotLab sensors could not be reused. Results indicated feasibility of optical biosensors for rapid and sensitive detection of the hipO gene of Campylobacter jejuni using specific ssDNA as a probe. © 2011 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Networked control systems (NCS) are distributed control system in which sensors, actuators and controllers are physically separated and connected through communication networks. NCS represent the evolution of networked control architectures providing greater modularity and control decentralization, ease maintenance and diagnosis and lower cost of implementation. A recent trend in this research topic is the development of NCS using wireless networks which enable interoperability between existing wired and wireless systems. This paper presents the feasibility analysis of using a serial RS-232 to Bluetooth converter as a wireless sensor link in NCS. In order to support this investigation, relevant performance metrics for wireless control applications such as jitter, time delay and messages lost are highlighted and calculated to evaluate the converter capabilities. In addition the control performance of an implemented motor control system using the converter is analyzed. Experimental results led to the conclusion that serial RS-232 Bluetooth converters can be used to implement wireless networked control systems (WNCS) providing transmission rates and closed control loop times which are acceptable for NCS applications. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a methodology for predicting the surface roughness of advanced ceramics using Adaptive Neuro-Fuzzy Inference System (ANFIS). To this end, a grinding machine was used, equipped with an acoustic emission sensor and a power transducer connected to the electric motor rotating the diamond grinding wheel. The alumina workpieces used in this work were pressed and sintered into rectangular bars. Acoustic emission and cutting power signals were collected during the tests and digitally processed to calculate the mean, standard deviation, and two other statistical data. These statistics, as well the root mean square of the acoustic emission and cutting power signals were used as input data for ANFIS. The output values of surface roughness (measured during the tests) were implemented for training and validation of the model. The results indicated that an ANFIS network is an excellent tool when applied to predict the surface roughness of ceramic workpieces in the grinding process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The good efficiency in a sewage treatment plant (WWTP) is a great importance to the environment. The management of electromechanical equipment installed in these stations is a major challenge due to the fact that they are installed on areas of difficult access and maintenance unhealthy and making the time for the correction of any faults is extended. This paper proposes the development of a Wireless Sensor Network (WSN), in order to monitor electromechanical equipment, allowing the Concessionaire a predictive control in real time. The design of a wireless sensors network for monitoring equipment requires not only the development and assembly of the sensor modules, but must also include the development of software for managing the data collected. Thus, this work includes a Zigbee WSN, small, adapted for monitoring of electromechanical equipment and environmental conditions of a WWTP, type stabilization pond, installed in an area of approximately 0.15 km 2 and the average flow of 320 liters of treatment per second. The experimental results show that this monitoring system can perform with the collection of parameters of performance and quality assessment at the station.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless sensor network (WSN) Is a technology that can be used to monitor and actuate on environments in a non-intrusive way. The main difference from WSN and traditional sensor networks is the low dependability of WSN nodes. In this way, WSN solutions are based on a huge number of cheap tiny nodes that can present faults in hardware, software and wireless communication. The deployment of hundreds of nodes can overcome the low dependability of individual nodes, however this strategy introduces a lot of challenges regarding network management, real-time requirements and self-optimization. In this paper we present a simulated annealing approach that self-optimize large scale WSN. Simulation results indicate that our approach can achieve self-optimization characteristics in a dynamic WSN. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main concern in Wireless Sensor Networks (WSN) algorithms and protocols are the energy consumption. Thus, the WSN lifetime is one of the most important metric used to measure the performance of the WSN approaches. Another important metric is the WSN spatial coverage, where the main goal is to obtain sensed data in a uniform way. This paper has proposed an approach called (m,k)-Gur Game that aims a trade-off between quality of service and the increasement of spatial coverage diversity. Simulation results have shown the effectiveness of this approach. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To analyze the components of the acoustic signal of swallowing using a specific software. Methods: Fourteen healthy subjects ranging in age from 20 to 50 years (mean age 31±10 years), were evaluated. Data collection consisted on the simultaneous capture of the swallowing audio with a microphone and of the swallowing videofluoroscopic image. The bursts of the swallowing acoustic signal were identified and their duration and the interval between them were later analyzed using a specific software, which allowed the simultaneous analyses between the acoustic wave and the videofluoroscopic image. Results: Three burst components were identified in most of the swallows evaluated. The first burst presented mean time of 87.3 milliseconds (ms) for water and 78.2 for the substance. The second burst presented mean time of 112.9 ms for water and 85.5 for the pasty substance. The mean interval between first and second burst was 82.1 ms for water and 95.3 ms for the pasty consistency, and between second and third burst was 339.8 ms for water and 322.0 ms for the pasty consistency. Conclusion: The software allowed the visualization of three bursts during the swallowing of healthy individuals, and showed that the swallowing signal in normal subjects is highly variable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A biomimetic sensor based on a carbon paste electrode modified with the nickel(II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine complex was developed as a reliable alternative technique for the sensitive and selective analysis of the herbicide diuron in environmental media. The sensor was evaluated using cyclic voltammetry and amperometric techniques. The best amperometric responses were obtained at 750 mV vs. Ag/AgCl (KClsat), using 0.1 mol L-1 phosphate buffer solution at pH 8.0. Under these conditions, the sensor showed a linear response for diuron concentrations between 9.9 × 10-6 and 1.5 × 10-4 mol L -1, a sensitivity of 22817 (±261) μA L mol-1, and detection and quantification limits of 6.14 × 10-6 and 2 × 10-5 mol L-1, respectively. The presence of the nickel complex in the carbon paste improved selectivity, stability, and sensitivity (which increased 700%), compared to unmodified paste. The applicability of the sensor was demonstrated using enriched environmental samples (river water and soil). © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exploitation of the electronic properties of carbon nanotubes for the development of voltammetric and amperometric sensors to monitor analytes of environmental relevance has increased in recent years. This work reports the development of a biomimetic sensor based on a carbon paste modified with 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin iron (III) chloride (a biomimetic catalyst of the P450 enzyme) and multi-wall carbon nanotubes (MWCNT), for the sensitive and selective detection of the herbicide 2,4- dichlorophenoxyacetic acid (2,4-D). The sensor was evaluated using cyclic voltammetry and amperometry, for electrochemical characterization and quantification purposes, respectively. Amperometric analyses were carried out at -100 mV vs. Ag/AgCl(KClsat), using a 0.1 mol L-1 phosphate buffer solution at pH 6.0 as the support electrolyte. Under these optimized analytical conditions, the sensor showed a linear response between 9.9 × 10-6 and 1.4 × 10-4 mol L-1, a sensitivity of 1.8 × 104 (±429) μA L mol -1, and limits of detection and quantification of 2.1 × 10 -6 and 6.8 × 10-6 mol L-1, respectively. The incorporation of functionalized MWCNT in the carbon paste resulted in a 10-fold increase in the response, compared to that of the biomimetic sensor without MWCNT. In addition, the low applied potential (-100 mV) used to obtain high sensitivity also contributed to the excellent selectivity of the proposed sensor. The viability of the application of this sensor for analysis of soil samples was confirmed by satisfactory recovery values, with a mean of 96% and RSD of 2.1% (n = 3). © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation and electrochemical characterization of hausmannite-type manganese oxide to use as a sensing material for sodium ion is described. This paper reports a new via synthetic to obtain of the hausmannite-type manganese oxide and its application in the construction of modified electrode as a voltammetric sensor. The electrochemical activity of hausmannite-type manganese oxide is controlled by intercalation/deintercalation of the sodium ions within the oxide lattice. The detection is based on the measurement of anodic current generated by oxidation of MnIII-MnIV at electrode surface. The best electrochemical response was obtained for a sensor composition of 20% (w/w) hausmannite oxide in the paste, a TRIS buffer solution of pH 6.0-7.0 and a scan rate of 50 mV s-1. A sensitive linear voltammetric response for sodium ions was obtained in the concentration range of 2.01 × 10 -5-2.09 × 10-4 mol L-1 with a slope of 355 μA L mmol-1 and a detection limit of 7.50 × 10 -6 mol L-1 using cyclic voltammetry. The use of hausmannite has significantly improved the selectivity of the sensor compared to the birnessite-type manganese oxide modified electrode. Under the working conditions, the proposed method was successfully applied to determination of sodium ions in urine samples. © 2013 Elsevier B.V.