921 resultados para Abstractization of diffuse control
Resumo:
A major problem related to the treatment of ecosystems is that they have no available mathematical formalization. This implies that many of their properties are not presented as short, rigorous modalities, but rather as long expressions which, from a biological standpoint, totally capture the significance of the property, but which have the disadvantage of not being sufficiently manageable, from a mathematical standpoint. The interpretation of ecosystems through networks allows us to employ the concepts of coverage and invariance alongside other related concepts. The latter will allow us to present the two most important relations in an ecosystem – predator–prey and competition – in a different way. Biological control, defined as “the use of living organisms, their resources or their products to prevent or reduce loss or damage caused by pests”, is now considered the environmentally safest and most economically advantageous method of pest control (van Lenteren, 2011). A guild includes all those organisms that share a common food resource (Polis et al., 1989), which in the context of biological control means all the natural enemies of a given pest. There are several types of intraguild interactions, but the one that has received most research attention is intraguild predation, which occurs when two organisms share the same prey while at the same time participating in some kind of trophic interaction. However, this is not the only intraguild relationship possible, and studies are now being conducted on others, such as oviposition deterrence. In this article, we apply the developed concepts of structural functions, coverage, invariant sets, etc. (Lloret et al., 1998, Esteve and Lloret, 2006a, Esteve and Lloret, 2006b and Esteve and Lloret, 2007) to a tritrophic system that includes aphids, one of the most damaging pests and a current bottleneck for the success of biological control in Mediterranean greenhouses.
Resumo:
"GAO/NSIAD-88-101FS"
Resumo:
"UC-11."
Resumo:
Contract no.: W-7405-ENG-48.
Resumo:
"DOE/EV-0046."
Resumo:
Description based on: Jan. 1-Dec. 31, 1967; title from caption.
Resumo:
The houbara bustard, Chlamydotis undulata, is a declining cryptic desert bird whose range extends from North Africa to Central Asia. Three subspecies are currently recognized by geographical distribution and morphology: C.u.fuertaventurae, C.u.undulata and C.u.macqueenii. We have sequenced 854 bp of mitochondrial control region from 73 birds to describe their population genetic structure with a particular sampling focus on the connectivity between C.u.fuertaventurae and C.u.undulata along the Atlantic seaboard of North Africa. Nucleotide and haplotypic diversity varied among the subspecies being highest in C.u.undulata, lowest in C.u.fuertaventurae and intermediate in C.u.macqueenii. C.u.fuertaventurae and C.u.undulata are paraphyletic and an average nucleotide divergence of 2.08% splits the later from C.u.macqueenii. We estimate that C.u.fuertaventurae and C.u.undulata split from C.u.macqueenii approximately 430 000 years ago. C.u.fuertaventurae and C.u.undulata are weakly differentiated (F-ST = 0.27, N-m = 1.3), indicative of a recent shared history. Archaeological evidence indicates that houbara bustards have been present on the Canary Islands for 130-170 000 years. However, our genetic data point to a more recent separation of C.u.fuertaventurae and C.u.undulata at around 20-25 000 years. Concordant archaeological, climatic opportunities for colonization and genetic data point to a scenario of: (i) initial colonization of the Canary Islands about 130 000 years ago; (ii) a period of secondary contact 19-30 000 years ago homogenizing any pre-existing genetic structure followed by; (iii) a period of relative isolation that persists today.
Resumo:
This study developed and tested a model of job uncertainty for survivors and victims of downsizing. Data were collected from three samples of employees in a public hospital, each representing three phases of the downsizing process: immediately before the announcement of the redeployment of staff, during the implementation of the downsizing, and towards the end of the official change programme. As predicted, levels of job uncertainty and personal control had a direct relationship with emotional exhaustion and job satisfaction, In addition, there was evidence to suggest that personal control mediated the relationship between job uncertainty and employee adjustment, a pattern of results that varied across each of the three phases of the change event. From the perspective of the organization's overall climate, it was found that levels of job uncertainty, personal control and job satisfaction improved and/or stabilized over the downsizing process. During the implementation phase, survivors experienced higher levels of personal control than victims, but both groups of employees reported similar levels of job uncertainty. We discuss the implications of our results for strategically managing uncertainty during and after organizational change.
Resumo:
Process optimisation and optimal control of batch and continuous drum granulation processes are studied in this paper. The main focus of the current research has been: (i) construction of optimisation and control relevant, population balance models through the incorporation of moisture content, drum rotation rate and bed depth into the coalescence kernels; (ii) investigation of optimal operational conditions using constrained optimisation techniques; (iii) development of optimal control algorithms based on discretized population balance equations; and (iv) comprehensive simulation studies on optimal control of both batch and continuous granulation processes. The objective of steady state optimisation is to minimise the recycle rate with minimum cost for continuous processes. It has been identified that the drum rotation-rate, bed depth (material charge), and moisture content of solids are practical decision (design) parameters for system optimisation. The objective for the optimal control of batch granulation processes is to maximize the mass of product-sized particles with minimum time and binder consumption. The objective for the optimal control of the continuous process is to drive the process from one steady state to another in a minimum time with minimum binder consumption, which is also known as the state-driving problem. It has been known for some time that the binder spray-rate is the most effective control (manipulative) variable. Although other possible manipulative variables, such as feed flow-rate and additional powder flow-rate have been investigated in the complete research project, only the single input problem with the binder spray rate as the manipulative variable is addressed in the paper to demonstrate the methodology. It can be shown from simulation results that the proposed models are suitable for control and optimisation studies, and the optimisation algorithms connected with either steady state or dynamic models are successful for the determination of optimal operational conditions and dynamic trajectories with good convergence properties. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Traditional real-time control systems are tightly integrated into the industrial processes they govern. Now, however, there is increasing interest in networked control systems. These provide greater flexibility and cost savings by allowing real-time controllers to interact with industrial processes over existing communications networks. New data packet queuing protocols are currently being developed to enable precise real-time control over a network with variable propagation delays. We show how one such protocol was formally modelled using timed automata, and how model checking was used to reveal subtle aspects of the control system's dynamic behaviour.
Resumo:
The purpose of the work reported here was to investigate the application of neural control to a common industrial process. The chosen problem was the control of a batch distillation. In the first phase towards deployment, a complex software simulation of the process was controlled. Initially, the plant was modelled with a neural emulator. The neural emulator was used to train a neural controller using the backpropagation through time algorithm. A high accuracy was achieved with the emulator after a large number of training epochs. The controller converged more rapidly, but its performance varied more widely over its operating range. However, the controlled system was relatively robust to changes in ambient conditions.
Resumo:
The association between diffuse-type beta -amyloid (AP) deposits and neuronal cell bodies in Alzheimer's disease (AD) and Down's syndrome (DS) could result from the secretion of AP from clusters of neurons in situ or the diffusion of A beta from cell processes, glial cells or blood vessels. To decide between these hypotheses, spatial pattern analysis was used to study the relationship between the degree of clustering of neuronal cell bodies and the presence of diffuse deposits in the temporal lobe of patients with DS. Significant clustering of neuronal cell bodies was present in 17/24 (71%) of brain areas studied. in addition, in 23/24 (96%) of brain areas, there was a positive correlation between the presence of diffuse deposits and the density of neurons. Hence, the data support the hypothesis that diffuse deposits develop in situ mainly as a result of the secretion of A beta by local clusters of neurons rather than by significant diffusion. Furthermore, the size of a diffuse deposit is likely to be determined by the number of neurons within a cluster which secrete A beta. The number and density of neurons could also be a factor determining the evolution of a diffuse into a mature amyloid deposit.
Resumo:
Purpose: Pharmacological intervention with peripheral sympathetic transmission at ciliary smooth muscle neuro-receptor junctions has been used against a background of controlled parasympathetic activity to investigate the characteristics of autonomic control of ocular accommodation. Methods: A continuously recording infrared optometer was used to measure accommodation on a group of five visually normal emmetropic subjects under open- and closed-loop conditions. A double-blind protocol between saline, timolol and betaxolol was used to differentiate between the localised action on ciliary smooth muscle and effects induced by changes in stimulus conditions. Data were collected before and 45 min following the instillation of saline, timolol or betaxolol. Open-loop post-task decay was investigated following 3 min sustained near fixation of a stimulus placed 3 D above the subject's pre-task tonic accommodation level. Closed-loop dynamic responses were recorded for each treatment condition while subjects viewed sinusoidally (0.05-0.6 Hz) or stepwise vergence-modulated targets over a 2 D range (2-4 D). Results: Open-loop data demonstrate a rapid post-task regression to pre-task tonic accommodation levels for saline and betaxolol control conditions. A slow positive post-task shift was induced by timolol indicating that sympathetic inhibition contributes to accommodative adaptation during sustained near vision. Closed-loop accommodation responses to temporally modulated sinusoidal stimuli showed characteristic features for both saline and betaxolol control conditions. Timolol induced a reduced gain for low- and mid-temporal frequencies (< 0.3 Hz) but did not affect the response at higher temporal frequencies. Response times to stepwise stimuli increased following the instillation of timolol for the near-to-far fixation condition compared with the controls and was related to the period of sustained prior fixation. Conclusions: Modulation of accommodation under open- and closed-loop conditions by a non-selective β-blocker is consistent with the temporal and inhibitory features of sympathetic innervation to ciliary smooth muscle. Although parasympathetic innervation predominates there is evidence to support a role for sympathetic innervation in the control of ocular accommodation. © 2002 The College of Optometrists.
Resumo:
This work reports the developnent of a mathenatical model and distributed, multi variable computer-control for a pilot plant double-effect climbing-film evaporator. A distributed-parameter model of the plant has been developed and the time-domain model transformed into the Laplace domain. The model has been further transformed into an integral domain conforming to an algebraic ring of polynomials, to eliminate the transcendental terms which arise in the Laplace domain due to the distributed nature of the plant model. This has made possible the application of linear control theories to a set of linear-partial differential equations. The models obtained have well tracked the experimental results of the plant. A distributed-computer network has been interfaced with the plant to implement digital controllers in a hierarchical structure. A modern rnultivariable Wiener-Hopf controller has been applled to the plant model. The application has revealed a limitation condition that the plant matrix should be positive-definite along the infinite frequency axis. A new multi variable control theory has emerged fram this study, which avoids the above limitation. The controller has the structure of the modern Wiener-Hopf controller, but with a unique feature enabling a designer to specify the closed-loop poles in advance and to shape the sensitivity matrix as required. In this way, the method treats directly the interaction problems found in the chemical processes with good tracking and regulation performances. Though the ability of the analytical design methods to determine once and for all whether a given set of specifications can be met is one of its chief advantages over the conventional trial-and-error design procedures. However, one disadvantage that offsets to some degree the enormous advantages is the relatively complicated algebra that must be employed in working out all but the simplest problem. Mathematical algorithms and computer software have been developed to treat some of the mathematical operations defined over the integral domain, such as matrix fraction description, spectral factorization, the Bezout identity, and the general manipulation of polynomial matrices. Hence, the design problems of Wiener-Hopf type of controllers and other similar algebraic design methods can be easily solved.
Resumo:
This thesis describes the investigation of an adaptive method of attenuation control for digital speech signals in an analogue-digital environment and its effects on the transmission performance of a national telecommunication network. The first part gives the design of a digital automatic gain control, able to operate upon a P.C.M. signal in its companded form and whose operation is based upon the counting of peaks of the digital speech signal above certain threshold levels. A study was ma.de of a digital automatic gain control (d.a.g.c.) in open-loop configuration and closed-loop configuration. The former was adopted as the means for carrying out the automatic control of attenuation. It was simulated and tested, both objectively and subjectively. The final part is the assessment of the effects on telephone connections of a d.a.g.c. that introduces gains of 6 dB or 12 dB. This work used a Telephone Connection Assessment Model developed at The University of Aston in Birmingham. The subjective tests showed that the d.a.g.c. gives advantage for listeners when the speech level is very low. The benefit is not great when speech is only a little quieter than preferred. The assessment showed that, when a standard British Telecom earphone is used, insertion of gain is desirable if speech voltage across the earphone terminals is below an upper limit of -38 dBV. People commented upon the presence of an adaptive-like effect during the tests. This could be the reason why they voted against the insertion of gain at level only little quieter than preferred, when they may otherwise have judged it to be desirable. A telephone connection with a d.a.g.c. in has a degree of difficulty less than half of that without it. The score Excellent plus Good is 10-30% greater.