934 resultados para ATP-diphosphohydrolase
Resumo:
AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP:ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates, including fish. In this study, we investigated the effects of AMPK activators on glucose uptake, AMPK activity, cell surface levels of trout GLUT4 and expression of GLUT1 and GLUT4 as well as the expression of enzymes regulating glucose disposal and PGC1α in trout myotubes derived from a primary muscle cell culture. We show that AICAR and metformin significantly stimulated glucose uptake (1.6 and 1.3 fold, respectively) and that Compound C completely abrogated the stimulatory effects of the AMPK activators on glucose uptake. The combination of insulin and AMPK activators did not result in additive nor synergistic effects on glucose uptake. Moreover, exposure of trout myotubes to AICAR and metformin resulted in an increase in AMPK activity (3.8 and 3 fold, respectively). We also provide evidence suggesting that stimulation of glucose uptake by AMPK activators in trout myotubes may take place, at least in part, by increasing the cell surface and mRNA levels of trout GLUT4. Finally, AICAR increased the mRNA levels of genes involved in glucose disposal (hexokinase, 6-phosphofructokinase, pyruvate kinase and citrate synthase) and mitochondrial biogenesis (PGC-1α) and did not affect glycogen content or glycogen synthase mRNA levels in trout myotubes. Therefore, we provide evidence, for the first time in non-mammalian vertebrates, suggesting a potentially important role of AMPK in stimulating glucose uptake and utilization in the skeletal muscle of fish.
Resumo:
Plusieurs études populationnelles ont montré l'existence d'une association entre des taux sanguins élevés de transferrine et le syndrome métabolique (SM). Bien que cette association soit bien établie, restent encore à être décrites les associations entre le SM et les autres marqueurs sanguins du métabolisme du fer, tels que le fer, la transferrine (Tsf), la capacité totale de fixation de la transferrine (CTF) ou la saturation de la transferrine (SaTsf) sanguins. Le but de notre étude a été d'identifier les associations entre les différents marqueurs du métabolisme du fer (fer, ferritine, Tsf, CTF et SaTsf) et le SM. Les données de l'étude CoLaus, récoltées entre 2003 et 2006, ont été utilisées. Le SM était défini selon les critères du National Cholesterol Education Program Adult Panel III. L'analyse statistique a été faite en stratifiant selon le genre ainsi que le status ménopausal chez les femmes. Des 6733 participants, 1235 (18%) ont été exclus de fait d'absence de données concernant les variables qui nous intéressaient, ou chez qui nous avons soupçonné une possible hémochromatose non diagnostiquée (SaTsf> 50%). Des 5498 participants restant (âge moyen ± écart-type: 53 ± 11 ans), 2596 étaient des hommes, 1285 des femmes pré- et 1617 des femmes postménopausées. La prévalence du SM était de 29,4% chez les hommes, 8,3% et 25,5% chez les femmes pré- et postménopausées, respectivement. Dans les trois groupes, la prévalence du SM était la plus haute dans les quartiles les plus élevés de ferritine, Tsf et CTF, ainsi que dans le quartile le plus bas de SaTsf. Après ajustement sur l'âge, l'indice de masse corporelle, la protéine C réactive, la consommation de tabac et/ou d'alcool, la prise de suppléments en fer et les marqueurs hépatiques, l'appartenance au quartile le plus élevé de ferritine, Tsf ou CTF était associée à un risque plus important de SM chez les hommes et les femmes postménopausées : Odds ratio (OR) et [intervalle de confiance à 95%] pour la ferritine 1.44 [1.07-1.94] et 1.47 [0.99-2.17]; pour la Tsf et la CTF, OR=1.43 [1.06-1.91] et 2.13 [1.44-3.15] pour les hommes et les femmes postménopausées, respectivement. Au contraire, l'appartenance au quartile le plus élevé de la SaTsf était associé à un risque moins important de SM: OR=0.77 [0.57-1.05] et 0.59 [0.39-0.90] pour les hommes et les femmes postménopausées, respectivement. Il n'y avait aucune association entre les marqueurs sanguins du métabolisme du fer et le SM chez les femmes préménopausées, ni entre le fer sanguin et le SM chez les trois groupes. En conclusion, la majorité des marqueurs sanguins du métabolisme du fer, mais pas le fer lui-même, sont associés de manière indépendante au SM chez les hommes et les femmes postménopausées. -- Context: Excessive iron storage has been associated with metabolic syndrome (MS). Objective: To assess the association between markers of iron metabolism and MS in a healthy population. Design: Cross-sectional study conducted between 2003 and 2006. Setting: Population-based study in Lausanne, Switzerland. Patients: 5,498 participants aged 35-75 years, stratified by sex and menopausal status. Participants with transferrin saturation (TSAT) >50% were excluded. Intervention: None. Main Outcome Measures: serum iron, ferritin, transferrin, total iron binding capacity (TIBC) and TSAT. MS was defined according to ATP-III criteria. Results: Prevalence of MS was 29.4% in men, 8.3% in premenopausal and 25.5% in postmenopausal women. On bivariate analysis, the highest prevalence of MS occurred in the highest quartiles of serum ferritin, transferrin and TIBC, and in the lowest quartile of TSAT. After multivariate adjustment for age, body mass index, C-reactive protein, smoking, alcohol, liver markers and iron supplementation, men and postmenopausal women in the highest quartile of serum ferritin, transferrin and TIBC had a higher risk of presenting with MS: for ferritin, Odds ratio and [95% CI]=1.44 [1.07-1.94] for men and 1.47 [0.99-2.17] for postmenopausal women; for transferrin and TIBC, OR=1.43 [1.06-1.91] and 2.13 [1.44-3.15], Participants in the highest quartile of TSAT had a lower risk of MS: OR=0.77 [0.57-1.05] for men and 0.59 [0.39-0.90] for postmenopausal women. No association was found between iron and MS and between markers of iron metabolism and MS in premenopausal women. Conclusion: Ferritin, transferrin, TIBC are positively and TSAT is negatively associated with MS in men and postmenopausal women.
Resumo:
Genetic tools have greatly aided in tracing the sources and colonization history of introduced species. However, recurrent introductions and repeated shuffling of populations may have blurred some of the genetic signals left by ancient introductions. Styela plicata is a solitary ascidian distributed worldwide. Although its origin remains unclear, this species is believed to have spread worldwide by travelling on ship's hulls. The goals of this study were to infer the genetic structure and global phylogeography of S. plicata and to look for present-day and historical genetic patterns. Two genetic markers were used: a fragment of the mitochondrial gene Cytochrome Oxidase subunit I (COI) and a fragment of the nuclear gene Adenine Nucleotide Transporter/ADP-ATP Translocase (ANT). A total of 368 individuals for COI and 315 for ANT were sequenced from 17 locations worldwide. The levels of gene diversity were moderate for COI to high for ANT. The Mediterranean populations showed the least diversity and allelic richness for both markers, while the Indian, Atlantic and Pacific Oceans had the highest gene and nucleotide diversities. Network and phylogenetic analyses with COI and ANT revealed two groups of alleles separated by 15 and 4 mutational steps, respectively. The existence of different lineages suggested an ancient population split. However, the geographic distributions of these groups did not show any consistent pattern, indicating different phylogeographic histories for each gene. Genetic divergence was significant for many population-pairs irrespective of the geographic distance among them. Stochastic introduction events are reflected in the uneven distribution of COI and ANT allele frequencies and groups among many populations. Our results confirmed that S. plicata has been present in all studied oceans for a long time, and that recurrent colonization events and occasional shuffling among populations have determined the actual genetic structure of this species.
Resumo:
Selon les statistiques, les maladies cancéreuses sont en augmentation dans les pays en développement ainsi que dans les pays industrialisés. Ceci peut s'expliquer largement par les habitudes alimentaires, le tabagisme, les infections, le manque d'activité physique, la pollution et le stress, entre autres. Ainsi, l'Organisation Mondiale de la Santé (OMS) prévoit une augmentation de la fréquence des cancers avec 15 millions de nouveaux cas par an en 2020. La transformation d'une cellule normale en une cellule cancéreuse se déroule en plusieurs étapes avec, au niveau moléculaire, différentes mutations ciblant des protéines régulant la croissance cellulaire. Un des exemples de protéines qui participent au contrôle des voies cellulaires impliquées lors de la prolifération des cellules sont les complexes de protéines mTORCl et mTORC2 (« mammalian target of rapamycin complex 1 and 2 »). Ces complexes mTORCl et mTORC2 activent des processus anaboliques (la synthèse de protéines et de lipides, le métabolisme énergétique, entre autres) et inhibent en même temps des voies de catabolismes cellulaires (autophagie et synthèse de lysosomes). Ils sont souvent mutés dans de nombreux cas de cancers, c'est pourquoi ils sont la cible de nombreux traitements anti-cancéreux. Pour ces raisons, nous nous sommes intéressés aux mécanismes d'actions moléculaires des drogues qui ciblent les complexes mTORCl et mTORC2. Nous avons ainsi découvert qu'une molécule présente uniquement dans le complexe mTORCl, raptor, était clivée en un fragment plus petit lors du traitement de cellules cancéreuses avec des drogues. Des molécules activées durant la mort cellulaire programmée par apoptose, les caspases, se sont révélées responsables du clivage de raptor. Nous avons ensuite décrit de façon précise les sites de clivage de raptor par les caspases durant la mort cellulaire. Il s'est avéré que le clivage de raptor affaiblissait son interaction avec mTOR au sein du complexe mTORCl, ce qui participe à l'inactivation de mTORCl lors de traitements avec des molécules anti-cancéreuses. Ces résultats nous ont permis de mieux comprendre les mécanismes d'actions de différentes drogues anti-cancéreuses au niveau du complexe mTORCl, ce qui peut être utile pour la synthèse de nouvelles molécules ciblant mTORCl ainsi que pour lutter contre les mécanismes de résistance chimiothérapeutiques. -- La protéine « mammalian target of rapamycin » (mTOR) est une sérine/thréonine kinase qui est hautement conservée des protistes à l'être humain. Deux complexes mTOR existent : le complexe 1 mTOR (mTORCl) et le complexe 2 mTOR (mTORC2). Ils régulent positivement des processus anaboliques (synthèse de protéines et de lipides, le métabolisme énergétique, l'organisation du cytosquelette, la survie cellulaire) et négativement des voies cataboliques (autophagic, biogenèse de lysosomes). Les complexes mTORCl et mTORC2 sont sensibles aux signaux mitogéniques tels que les acides aminés, le glucose, les facteurs de croissance, l'état énergétique (ATP) et les niveaux d'oxygène et induisent des voies de croissance cellulaire essentielles. La voie cellulaire regulée par mTORCl peut être hyperactivée dans de nombreux cancers humains. Puisque plusieurs voies cellulaires convergent et régulent les complexes mTORCl et mTORC2, des mutations dans les kinases en amont peuvent mener à une dérégulation de l'activation de mTOR. Des stratégies thérapeutiques ont été développées pour cibler les complexes mTORCl et mTORC2, ainsi que les kinases en amont qui régulent mTOR. Plusieurs drogues ciblant mTORCl, telles que la rapamycine et la curcumine, affectent l'interaction entre mTOR et un composant spécifique de mTORCl, raptor. Dans cette étude, nous nous sommes intéressés aux mécanismes moléculaires des drogues qui ciblent mTORCl, ainsi que leur effet déstabilisant sur l'interaction entre mTOR et raptor dans des lignées cellulaires de lymphomes. Nous avons démontré que raptor était clivé en un fragment de lOOkDa après traitement avec la rapamycine, la curcumine, l'étoposide, la cisplatine, la staurosporine et le ligand Fas (FasL). Etant donné que ces drogues ont été décrites comme induisant I'apoptose, l'utilisation d'un inhibiteur de caspases (z- VAD-fmk) a révélé que le clivage de raptor, lors de la mort cellulaire, était dépendant des caspases. Des essais caspases in vitro ont permis d'identifier la caspase-6 (ainsi que probablement d'autres caspases) comme étant une protéase impliquée dans le clivage de raptor. La séquence protéique de raptor a montré potentiellement plusieurs sites de clivage de caspases aux extrémités amino-terminale et carboxy-terminale. La mutagénèse a permis d'identifier les sites de clivages de raptor par les caspases comme étant DEAD LTD (acides aminés 17-23) et DDADD (acides aminés 939¬943). De plus, le clivage de raptor corrèle avec l'inhibition de l'activité de mTORCl envers ces substrats (S6K et 4E-BP1). Nous avons aussi observé que le clivage de raptor affaiblissait l'interaction entre mTOR et raptor, ce qui indique que ce clivage est une étape critique dans l'inhibition de mTORCl durant I'apoptose. Pour terminer, la mutagénèse du site de clivage de raptor DDADD a montré une résistance à la mort cellulaire de cellules cancéreuses. Notre travail de recherche a révélé un nouveau mécanisme moléculaire qui module l'organisation et l'activité de mTORCl, ce qui peut être d'un grand intérêt pour les recherches dans le domaine de mTOR ainsi que pour la découverte de molécules ciblant mTORCl. -- The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase, which is highly conserved from yeast to humans. Two different mTOR complexes exist: the mTOR complex 1 (mTORCl) and the mTOR complex 2 (mTORC2). They positively regulate anabolic processes (protein and lipid synthesis, energy metabolism, cytoskeleton organization, cell survival) and negatively regulate catabolic pathways (autophagy, lysosome biogenesis). The mTORCl and mTORC2 respond to mitogenic stimuli such as amino acids, glucose, growth factors, energy levels (ATP) and oxygen levels and drive essential cellular growth pathways. The mTORCl pathway can be found hyperactivated in numerous human cancers. As various cellular pathways converge and regulate mTORCl and mTORC2, mutations in upstream protein kinases can lead to a deregulated mTOR activation. Different therapeutic strategies have been developped to target mTORCl, mTORC2, as well as upstream protein kinases regulating mTOR pathways. Various drugs targeting mTORCl, such as rapamycin and curcumin, affect the interaction between mTOR and a specific mTORCl component, raptor. In this study, we investigated the molecular mechanisms of drugs targeting mTORCl, as well as their destabilizing effect on the mTOR-raptor interaction in lymphoma cell lines. We demonstrated that raptor was processed into a lOOkDa fragment after treatment with rapamycin, curcumin, etoposide, cisplatin, staurosporine and FasL. As these drugs were reported to induce apoptosis, the use of a pan-caspase inhibitor (z-VAD-fmk) revealed that the cleavage of raptor under cell death was caspase-dependent. In vitro caspase assays were performed to identify caspases-6 (and probably other caspases) as an important cysteine protease implicated in the cleavage of raptor. Analysis of raptor protein sequence showed several putative caspase-specific cleavage sites at the N-terminal and the C-terminal ends. Mutagenesis studies allowed us to identify the DEADLTD (amino acids 17-23) and the DDADD (amino acids 939-943) as the caspase-dependent cleavage residues of raptor. Furthermore, the cleavage of raptor correlated with inhibition of mTORCl activity towards its specific targets (4E-BP1 and S6K). We also highlighted that raptor processing weakened the interaction between mTOR and raptor, indicating that raptor cleavage is a critical step in the mTORCl inhibition process during apoptosis. Finally, mutagenesis of raptor C-terminal cleavage site (DDADD) conferred resistance to the chemotherapeutic-mediated cell death cascade of cancer cell. Our research work highlighted a new molecular mechanism modulating mTORCl organization and activity, which can be of great interest in the mTOR field research and for designing drugs trageting mTORCl.
Resumo:
Inflammation is a complex process that implies the interaction between cells and molecular mediators, which, when not properly 'tuned,' can lead to disease. When inflammation affects the eye, it can produce severe disorders affecting the superficial and internal parts of the visual organ. The nucleoside adenosine and nucleotides including adenine mononucleotides like ADP and ATP and dinucleotides such as P(1),P(4)-diadenosine tetraphosphate (Ap4A), and P(1),P(5)-diadenosine pentaphosphate (Ap5A) are present in different ocular locations and therefore they may contribute/modulate inflammatory processes. Adenosine receptors, in particular A2A adenosine receptors, present anti-inflammatory action in acute and chronic retinal inflammation. Regarding the A3 receptor, selective agonists like N(6)-(3-iodobenzyl)-5'-N-methylcarboxamidoadenosine (CF101) have been used for the treatment of inflammatory ophthalmic diseases such as dry eye and uveoretinitis. Sideways, diverse stimuli (sensory stimulation, large intraocular pressure increases) can produce a release of ATP from ocular sensory innervation or after injury to ocular tissues. Then, ATP will activate purinergic P2 receptors present in sensory nerve endings, the iris, the ciliary body, or other tissues surrounding the anterior chamber of the eye to produce uveitis/endophthalmitis. In summary, adenosine and nucleotides can activate receptors in ocular structures susceptible to suffer from inflammatory processes. This involvement suggests the possible use of purinergic agonists and antagonists as therapeutic targets for ocular inflammation.
Resumo:
The transport of macromolecules, such as low-density lipoprotein (LDL), and their accumulation in the layers of the arterial wall play a critical role in the creation and development of atherosclerosis. Atherosclerosis is a disease of large arteries e.g., the aorta, coronary, carotid, and other proximal arteries that involves a distinctive accumulation of LDL and other lipid-bearing materials in the arterial wall. Over time, plaque hardens and narrows the arteries. The flow of oxygen-rich blood to organs and other parts of the body is reduced. This can lead to serious problems, including heart attack, stroke, or even death. It has been proven that the accumulation of macromolecules in the arterial wall depends not only on the ease with which materials enter the wall, but also on the hindrance to the passage of materials out of the wall posed by underlying layers. Therefore, attention was drawn to the fact that the wall structure of large arteries is different than other vessels which are disease-resistant. Atherosclerosis tends to be localized in regions of curvature and branching in arteries where fluid shear stress (shear rate) and other fluid mechanical characteristics deviate from their normal spatial and temporal distribution patterns in straight vessels. On the other hand, the smooth muscle cells (SMCs) residing in the media layer of the arterial wall respond to mechanical stimuli, such as shear stress. Shear stress may affect SMC proliferation and migration from the media layer to intima. This occurs in atherosclerosis and intimal hyperplasia. The study of blood flow and other body fluids and of heat transport through the arterial wall is one of the advanced applications of porous media in recent years. The arterial wall may be modeled in both macroscopic (as a continuous porous medium) and microscopic scales (as a heterogeneous porous medium). In the present study, the governing equations of mass, heat and momentum transport have been solved for different species and interstitial fluid within the arterial wall by means of computational fluid dynamics (CFD). Simulation models are based on the finite element (FE) and finite volume (FV) methods. The wall structure has been modeled by assuming the wall layers as porous media with different properties. In order to study the heat transport through human tissues, the simulations have been carried out for a non-homogeneous model of porous media. The tissue is composed of blood vessels, cells, and an interstitium. The interstitium consists of interstitial fluid and extracellular fibers. Numerical simulations are performed in a two-dimensional (2D) model to realize the effect of the shape and configuration of the discrete phase on the convective and conductive features of heat transfer, e.g. the interstitium of biological tissues. On the other hand, the governing equations of momentum and mass transport have been solved in the heterogeneous porous media model of the media layer, which has a major role in the transport and accumulation of solutes across the arterial wall. The transport of Adenosine 5´-triphosphate (ATP) is simulated across the media layer as a benchmark to observe how SMCs affect on the species mass transport. In addition, the transport of interstitial fluid has been simulated while the deformation of the media layer (due to high blood pressure) and its constituents such as SMCs are also involved in the model. In this context, the effect of pressure variation on shear stress is investigated over SMCs induced by the interstitial flow both in 2D and three-dimensional (3D) geometries for the media layer. The influence of hypertension (high pressure) on the transport of lowdensity lipoprotein (LDL) through deformable arterial wall layers is also studied. This is due to the pressure-driven convective flow across the arterial wall. The intima and media layers are assumed as homogeneous porous media. The results of the present study reveal that ATP concentration over the surface of SMCs and within the bulk of the media layer is significantly dependent on the distribution of cells. Moreover, the shear stress magnitude and distribution over the SMC surface are affected by transmural pressure and the deformation of the media layer of the aorta wall. This work reflects the fact that the second or even subsequent layers of SMCs may bear shear stresses of the same order of magnitude as the first layer does if cells are arranged in an arbitrary manner. This study has brought new insights into the simulation of the arterial wall, as the previous simplifications have been ignored. The configurations of SMCs used here with elliptic cross sections of SMCs closely resemble the physiological conditions of cells. Moreover, the deformation of SMCs with high transmural pressure which follows the media layer compaction has been studied for the first time. On the other hand, results demonstrate that LDL concentration through the intima and media layers changes significantly as wall layers compress with transmural pressure. It was also noticed that the fraction of leaky junctions across the endothelial cells and the area fraction of fenestral pores over the internal elastic lamina affect the LDL distribution dramatically through the thoracic aorta wall. The simulation techniques introduced in this work can also trigger new ideas for simulating porous media involved in any biomedical, biomechanical, chemical, and environmental engineering applications.
Resumo:
The chemical and biological properties of energy-rich phosphate compounds, e.g. ATP and acetyl phosphate, were revised. The role of water in the formation of this class of energy-rich compounds in biological systems is also discussed.
Resumo:
Drug transporting membrane proteins are expressed in various human tissues and blood-tissue barriers, regulating the transfer of drugs, toxins and endogenous compounds into or out of the cells. Various in vitro and animal experiments suggest that P-glycoprotein (P-gp) forms a functional barrier between maternal and fetal blood circulation in the placenta thereby protecting the fetus from exposure to xenobiotics during pregnancy. The multidrug resistance-associated protein 1 (MRP1) is a relatively less studied transporter protein in the human placenta. The aim of this study series was to study the role of placental transporters, apical P-gp and basal MRP1, using saquinavir as a probe drug, and to study transfer of quetiapine and the role of P-gp in its transfer in the dually perfused human placenta/cotyledon. Furthermore, two ABCB1 (encoding P-gp) polymorphisms (c.3435C>T, p.Ile1145Ile and c.2677G>T/A, p.Ala893Ser/Thr) were studied to determine their impact on P-gp protein expression level and on the transfer of the study drugs. Also, the influence of the P-gp protein expression level on the transfer of the study drugs was addressed. Because P-gp and MRP1 are ATP-dependent drug-efflux pumps, it was studied whether exogenous ATP is needed for the function of ATP-dependent transporter in the present experimental model. The present results indicated that the addition of exogenous ATP was not necessary for transporter function in the perfused human placental cotyledon. Saquinavir and quetiapine were both found to cross the human placenta; transplacental transfer (TPTAUC %) for saquinavir was <0.5% and for quetiapine 3.7%. Pharmacologic blocking of P-gp led to disruption of the blood-placental barrier (BPB) and increased the placental transfer of P-gp substrate, saquinavir, into the fetal circulation by 6- to 8-fold. In reversed perfusions P-gp, MRP1 and possibly OATP2B1 had a negligible role in the fetal-to-maternal transfer of saquinavir. The TPTAUC % of saquinavir was about 100-fold greater from the fetal side to the maternal side compared with the maternal-to-fetal transfer. P-gp activity is not likely to modify the placental transfer of quetiapine. Higher P-gp protein expression levels were associated with the variant allele 3435T, but no correlation was found between the TPTAUC % of saquinavir and placental P-gp protein expression. The present results indicate that P-gp activity drastically affects the fetal exposure to saquinavir, and suggest that pharmacological blockade of the P-gp activity during pregnancy may pose an increased risk for adverse fetal outcome. The blockade of P-gp activity could be used in purpose to obtain higher drug concentration to the fetal side, for example, in prevention (to decrease virus transfer to fetal side) or in treating sick fetus.
Resumo:
Background: One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype. Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent) in order to understand its possible role in CaP chemoresistance. Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy. Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59, suggesting that in CaP cells, MRP1 is localized in prostasomes. Conclusion: We hypothesize that the presence of MRP1 in prostasomes could serve as a reservoir of MRP1; thus, taking advantage of the release of their content, MRP1 could be translocated to the plasma membrane contributing to the chemoresistant phenotype. The presence of MRP1 in prostasomes could serve as a predictor of malignancy in CaP
Resumo:
Background: One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype. Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent) in order to understand its possible role in CaP chemoresistance. Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy. Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59, suggesting that in CaP cells, MRP1 is localized in prostasomes. Conclusion: We hypothesize that the presence of MRP1 in prostasomes could serve as a reservoir of MRP1; thus, taking advantage of the release of their content, MRP1 could be translocated to the plasma membrane contributing to the chemoresistant phenotype. The presence of MRP1 in prostasomes could serve as a predictor of malignancy in CaP
Resumo:
Background: One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype. Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent) in order to understand its possible role in CaP chemoresistance. Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy. Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59, suggesting that in CaP cells, MRP1 is localized in prostasomes. Conclusion: We hypothesize that the presence of MRP1 in prostasomes could serve as a reservoir of MRP1; thus, taking advantage of the release of their content, MRP1 could be translocated to the plasma membrane contributing to the chemoresistant phenotype. The presence of MRP1 in prostasomes could serve as a predictor of malignancy in CaP
Resumo:
During the past few years, a considerable number of research articles have been published relating to the structure and function of the major photosynthetic protein complexes, photosystem (PS) I, PSII, cytochrome (Cyt) b6f, and adenosine triphosphate (ATP) synthase. Sequencing of the Arabidopsis thaliana (Arabidopsis) genome together with several high-quality proteomics studies has, however, revealed that the thylakoid membrane network of plant chloroplasts still contains a number of functionally unknown proteins. These proteins may have a role as auxiliary proteins guiding the assembly, maintenance, and turnover of the thylakoid protein complexes, or they may be as yet unknown subunits of the photosynthetic complexes. Novel subunits are most likely to be found in the NAD(P)H dehydrogenase (NDH) complex, the structure and function of which have remained obscure in the absence of detailed crystallographic data, thus making this thylakoid protein complex a particularly interesting target of investigation. In this thesis, several novel thylakoid-associated proteins were identified by proteomics-based methods. The major goal of characterization of the stroma thylakoid associated polysome-nascent chain complexes was to determine the proteins that guide the dynamic life cycle of PSII. In addition, a large protein complex of ≥ 1,000 kDa, residing in the stroma thylakoid, was characterized in greater depth and it was found to be a supercomplex composed of the PSI and NDH complexes. A set of newly identified proteins from Arabidopsis thylakoids was subjected to detailed characterization using the reverse genetics approach and extensive biochemical and biophysical analysis. The role of the novel proteins, either as auxiliary proteins or subunits of the photosynthetic protein complexes, was revealed. Two novel thylakoid lumen proteins, TLP18.3 and AtCYP38, function as auxiliary proteins assisting specific steps of the assembly/repair of PSII. The role of the 10-kDa thylakoid lumen protein PsbR is related to the optimization of oxygen evolution of PSII by assisting the assembly of the PsbP protein. Two integral thylakoid membrane proteins, NDH45 and NDH48, are novel subunits of the chloroplast NDH complex. Finally, the thylakoid lumen immunophilin AtCYP20-2 is suggested to interact with the NDH complex, instead of PSII as was hypothesized earlier.
Resumo:
La efectividad en el deporte hace referencia al impacto alcanzado por una acción llevada a cabo en condiciones habituales, estando presente en la ejecución de cualquier actividad física, referida a la capacidad para producir el efecto deseado, y está relacionada con la e$cacia, entendida como el efecto de una acción llevada a cabo en las mejores condiciones posibles, y que tiene como objetivo, lograr la meta, o conseguir el triunfo. El objetivo de este trabajo consistió en identificar la relación entre la zona y el tipo de golpe, desde la cual el tenista presenta mayor y menor efectividad en el juego. Para ello se observó a un tenista durante 12 entrenamientos con un rival de nivel equivalente, según la ATP, durante la temporada 2012-2013, registrando su situación en la cancha y el tipo de golpe de todas las devoluciones con éxito, entendido como obtención del punto o recuperación del saque. Se crearon tres criterios categóricos que constituyen un instrumento de observación para registrar el juego del tenista en la zona horizontal, y la zona vertical de la pista, además del tipo de golpe que realiza en términos de drive, revés, smash y dejada. Utilizando la técnica de regresión log-lineal, se obtuvieron resultados que indican que el jugador presenta una menor efectividad en los golpes realizados desde el lado izquierdo, y muestra una mayor efectividad en el drive y revés ejecutados desde media pista o fondo del lado derecho. La interpretación de los resultados aporta información sobre las localizaciones en la pista y los golpes, relacionados con su mayor y menor efectividad.
Resumo:
Protein kinases are one of the largest protein families and they are responsible for regulation of a great number of signal transduction pathways in cells, through the phosphorylation of serine, threonine, or tyrosine residues. Deregulation of these enzymes is associated with several diseases including cancer, diabetes and inflammation. For this reason, specific inhibition of tyrosine or serine/threonine kinases may represent an interesting therapeutic approach. The most important types of protein kinases, their structural features and chemical inhibitors are discussed in this paper. Emphasis is given to the small-molecule drugs that target the ATP-binding sites of these enzymes.
Resumo:
The present study aimed to investigate the in vitro effects of isoschaftoside isolated from Syngonium podophyllum on pig kidney Na+,K+-ATPase. The Na+, K+-ATPase activity was determined by colorimetric measurement of inorganic phosphate (Pi), resulting from ATP hydrolysis. Isoschaftoside significantly decreased the renal Na+, K+-ATPase activity at the highest concentration as well as at a lower concentration. Our work suggests that isoschaftoside is a promising compound for the treatment of hypertension.