977 resultados para ASSISTED ELECTROCHEMICAL DEGRADATION
Resumo:
The effect of calcination conditions on the size and killing activity of CaO nanoparticles towards L. plantarum was studied in this paper. The results showed that CaO nanoparticles with a diameter of 20 nm could be obtained under the investigated conditions. The lethal effect of CaO nanoparticles after incubation of 6 or 24 h increased with increasing calcination time. Using CaO-SA, CaO-SB, and CaO-SC after a 24-h exposure, 2.25, 3.37, and 5.97 log L. plantarum were killed, respectively, at a concentration of 100 ppm. The current results show that the use of CaO nanoparticles as antibacterial agents has significant potential in food-relevant industries.
Resumo:
Turnera subulata Sm., known as "Chanana" or "flor-do-Guarujá" in Brazilian folklore, is a plant species belonging to the subfamily Turneroideae of family Passifloraceae, which is used for various medicinal purposes in Brazil. The phytochemical study conducted here led to the isolation and identification of ten compounds present in T. subulata: two mixtures of steroids, sitosterol and stigmasterol (nonglycosylated and glycosylated); a mixture of flavonoids, 5,7,4′-trihidroxiflavona-8-C-α-glucopyranoside and 5,7,3′,4′-tetrahidroxiflavona-8-C-α-glucopyranosidel; and four phaeophytins, phaeophytin purpurin-18-phytyl ester, a rare natural product, phaeophytin a , 13²-hydroxy-(13²-S)-phaeophytin a , and phaeophytin b Phaeophytin b exhibited electrochemical activity similar to that of phthalocyanines.
Resumo:
Flumequine degradation by electrochemical and photo-electrochemical processes was evaluated in this study. The antimicrobial activity of the solutions subjected to the electrochemical processes was monitored during the assays. The experiments were carried out using DSA® (dimensionally stable anode) electrode. The influence of current density was investigated for the 7.5 to 45 mA cm-2 range. The photo-electrochemical process was more efficient for degrading flumequine (85%) and reducing solution antimicrobial activity. For both processes, the residual antimicrobial activity decreased as flumequine degradation increased. The reaction intermediate m/z 244 (5-methyl-1-oxo-6,7-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic acid) was identified.
Resumo:
The optimization of the anaerobic degradation of the azo dye Remazol golden yellow RNL was performed according to multivariate experimental designs: a 2² full-factorial design and a central composite design (CCD). The CCD revealed that the best incubation conditions (90% color removal) for the degradation of the azo dye (50 mg L- 1) were achieved with 350 mg L- 1 of yeast extract and 45 mL of anaerobic supernatant (free cell extract) produced from the incubation of 650 mg L- 1 of anaerobic microorganisms and 250 mg L- 1 of glucose. A first-order kinetics model best fit the experimental data (k = 0.0837 h- 1, R² = 0.9263).
Resumo:
Iontophoresis is a method of administering substances through the skin, which uses electrical current or potential to promote transdermal delivery. We focused on α-tocopherol (vitamin E), a natural antioxidant able to reduce or block the oxidation reactions induced by free radicals in biological membranes. The aim of this study was to perform electrochemical evaluation and analysis of vertical diffusion of gel + α-tocopherol undergoing iontophoresis. The results showed a reduction in peak current at 0.78 V of α-tocopherol molecules when subjected to iontophoresis, increasing the diffusion and degradation of the system.
Resumo:
Electrosynthesis of dimethyl carbonate (DMC) from methanol and carbon monoxide using an Cu(phen)Cl2 catalyst was achieved at room temperature and atmospheric pressure. The catalytic activity of the ligand 1,10-phenanthroline (phen) and the catalytic system were analyzed. The IR characterization results for the complex catalyst showed that copper ions were coordinated by nitrogen atoms of phen. In addition, the effects of the influencing factors, such as reaction time (t), reaction temperature (T) and the surface area of the working electrode (SWE) were studied.
Resumo:
Materials based on tungstophosphoric acid (TPA) immobilized on NH4ZSM5 zeolite were prepared by wet impregnation of the zeolite matrix with TPA aqueous solutions. Their concentration was varied in order to obtain TPA contents of 5%, 10%, 20%, and 30% w/w in the solid. The materials were characterized by N2 adsorption-desorption isotherms, XRD, FT-IR, 31P MAS-NMR, TGA-DSC, DRS-UV-Vis, and the acidic behavior was studied by potentiometric titration with n-butylamine. The BET surface area (SBET) decreased when the TPA content was raised as a result of zeolite pore blocking. The X-ray diffraction patterns of the solids modified with TPA only presented the characteristic peaks of NH4ZSM5 zeolites, and an additional set of peaks assigned to the presence of (NH4)3PW12O40. According to the Fourier transform infrared and 31P magic angle spinning-nuclear magnetic resonance spectra, the main species present in the samples was the [PW12O40]3- anion, which was partially transformed into the [P2W21O71]6- anion during the synthesis and drying steps. The thermal stability of the NH4ZSM5TPA materials was similar to that of their parent zeolites. Moreover, the samples with the highest TPA content exhibited band gap energy values similar to those reported for TiO2. The immobilization of TPA on NH4ZSM5 zeolite allowed the obtention of catalysts with high photocatalytic activity in the degradation of methyl orange dye (MO) in water, at 25 ºC. These can be reused at least three times without any significant decrease in degree of degradation.
Resumo:
The electrochemical oxidation of lambdacyhalotrin in a triton X-100 water solution on a PbO2-Bi electrode has been studied. It was discovered that electrocatalytic degradation proceeded through the Langmuir-Hinshelwood (L-H) mechanism. The Langmuir adsorption equilibrium constant of the organic compound on the PbO2-Bi surface (0.67 (±0.02) mg-1L) and the L-H maximum reaction rate for lambdacyhalotrin oxidation (0.040 (±0.002) mg L-1 min-1) was also determined on the basis of kinetic data. Oxidation/mineralization was tested at electrode potential higher than 2.3 V vs. Ag/AgCl, in this conditions the higher degradation percent of 85 (±4) % has been obtained.
Resumo:
Bionanocomposites derived from poly(L-Lactide) (PLLA) were reinforced with chemically modified cellulose nanocrystals (m-CNCs). The effects of these modified cellulose nanoparticles on the mechanical and hydrolytic degradation behavior of polylactide were studied. The m-CNCs were prepared by a method in which hydrolysis of cellulose chains is performed simultaneously with the esterification of hydroxyl groups to produce modified nanocrystals with ester groups. FTIR, elemental analysis, TEM, XRD and contact angle measurements were used to confirm and characterize the chemical modifications of the m-CNCs. These bionanocomposites gave considerably better mechanical properties than neat PLLA based on an approximately 100% increase in tensile strength. Due to the hydrophobic properties of the esterified nanocrystals incorporated into a polymer matrix, it was also demonstrated that a small amount of m-CNCs could lead to a remarkable decrease in the hydrolytic degradation rate of the biopolymer. In addition, the m-CNCs considerably delay the degradation of the nanocomposite by providing a physical barrier that prevents the permeation of water, which thus hinders the overall absorption of water into the matrix. The results obtained in this study show the nanocrystals can be used to reinforce polylactides and fine-tune their degradation rates in moist or physiological environments.
Resumo:
This study investigated the reductive degradation of acetamiprid (5 mg L-1) in aqueous medium (at pH 2.0) induced by zero-valent iron (50 mg). The process was monitored using high-performance liquid chromatography (HPLC) to determine the degradation rate as a function of reaction time, and direct infusion electrospray ionization mass spectrometry (DI-ESI-MS) to search for (and potentially characterize) any possible byproducts formed during degradation. The results obtained via HPLC showed that after 60 min, the degradation of the substrate reached nearly 100% in an acidic medium, whereas the mineralization rate (as determined by total organic carbon measurements) was as low as 3%. Data obtained by DI-ESI-MS showed that byproducts were formed mainly by insertions of hydrogen atoms into the nitrile, imine, and pyridine ring moieties, in addition to the observation of chlorine substitution by hydrogen replacement (hydrodechlorination) reactions.
Resumo:
A nitrate selective electrode was prepared for use in an aggresive medium (high acidic or basic concentration). It is demonstrated that the depending E graph with respect to pNO3- has not a Nernstian response in concentration acidic range upper 0.1 mol/L H2SO4. The observed behaviour is supposed to be due to the formation of a dimeric anion HN2O6-.
Resumo:
This work describes the development of an alternative acetate bath for the electrochemical codeposition of Ni-Cu-Fe electrodes at low pH that is stable for several weeks and produces electrodes with good performance for chlor-alkali electrolysis. Physical characterization of the electrode surface was made using X ray absorption spectroscopy (XAS), scanning electron microscopy (SEM) and energy dispersive analysis (EDX). The evaluation of the material as electrocatalyst for the hydrogen evolution reaction (her) was carried out in brine solution (160 g L-1 NaCl + 150 g L-1 NaOH) at different temperatures through steady-state polarization curves. The Ni-Cu-Fe electrodes obtained with this bath have shown low overpotentials for the her, around 0.150 V at 353 K, and good stability under continuous long-term operation for 260 hours. One positive aspect of this cathode is that the polarization behavior of the material shows only one Tafel slope over the temperature range of 298 - 353 K.
Resumo:
Electrodes consisting of Pt nanoparticles dispersed on thin films of niobium oxide were prepared onto titanium substrates by a sol-gel method. The physical characterization of these electrodes was carried out by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. The mean size of the Pt particles was found to be 10.7 nm. The general aspects of the electrochemical behavior were studied by cyclic voltammetry in 1 mol L-1 HClO4 aqueous solution. The response of these electrodes in relation to the oxidation of formaldehyde and methanol in acidic media was also studied.
Resumo:
The electrochemical oxidation on platinum and platinum rhodium bimetallic electrodes was studied by Differential Electrochemical Mass Spectrometry for several ethanol concentrations in solution. It is found that increasing the ethanol concentration the production of the partially oxidized products (acetaldehyde) increases as the concentration increases. On the other hand, addition of 25% at. of rhodium increases the full oxidation to CO2. Another interesting result observed is a correlation between the intensity of the dehydrogenations peak at 0.3 V vs. RHE and the CO2 yield for the different ethanol concentration studied.