979 resultados para ARGOS satellite-linked dive recorder SDR-T16


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humpback whales (Megaptera novaeangliae) undertake extensive seasonal migrations from summer feeding areas in high latitudes to winter mating and calving grounds in tropical waters (Clapham and Mead 1999, http://www.jstor.org/stable/3504352). In the Southern Hemisphere, seven populations are recognized by the International Whaling Commission (IWC). In this study, we report the movements of seven whales satellite-tagged in the Cook Islands, including the first documented migration to an antarctic feeding ground. In September 2006 and 2007 we attached Argos satellite-monitored tags to eight humpback whales of various sex and behavioral classes. All whales were tagged in the nearshore waters of Rarotonga (the largest island in the Cooks group).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social structure is a key determinant of population biology and is central to the way animals exploit their environment. The risk of predation is often invoked as an important factor influencing the evolution of social structure in cetaceans and other mammals, but little direct information is available about how cetaceans actually respond to predators or other perceived threats. The playback of sounds to an animal is a powerful tool for assessing behavioral responses to predators, but quantifying behavioral responses to playback experiments requires baseline knowledge of normal behavioral patterns and variation. The central goal of my dissertation is to describe baseline foraging behavior for the western Atlantic short-finnned pilot whales (Globicephala macrohynchus) and examine the role of social organization in their response to predators. To accomplish this I used multi-sensor digital acoustic tags (DTAGs), satellite-linked time-depth recorders (SLTDR), and playback experiments to study foraging behavior and behavioral response to predators in pilot whales. Fine scale foraging strategies and population level patterns were identified by estimating the body size and examining the location and movement around feeding events using data collected with DTAGs deployed on 40 pilot whales in summers of 2008-2014 off the coast of Cape Hatteras, North Carolina. Pilot whales were found to forage throughout the water column and performed feeding buzzes at depths ranging from 29-1176 meters. The results indicated potential habitat segregation in foraging depth in short-finned pilot whales with larger individuals foraging on average at deeper depths. Calculated aerobic dive limit for large adult males was approximately 6 minutes longer than that of females and likely facilitated the difference in foraging depth. Furthermore, the buzz frequency and speed around feeding attempts indicate this population pilot whales are likely targeting multiple small prey items. Using these results, I built decision trees to inform foraging dive classification in coarse, long-term dive data collected with SLTDRs deployed on 6 pilot whales in the summers of 2014 and 2015 in the same area off the coast of North Carolina. I used these long term foraging records to compare diurnal foraging rates and depths, as well as classify bouts with a maximum likelihood method, and evaluate behavioral aerobic dive limits (ADLB) through examination of dive durations and inter-dive intervals. Dive duration was the best predictor of foraging, with dives >400.6 seconds classified as foraging, and a 96% classification accuracy. There were no diurnal patterns in foraging depth or rates and average duration of bouts was 2.94 hours with maximum bout durations lasting up to 14 hours. The results indicated that pilot whales forage in relatively long bouts and the ADLB indicate that pilot whales rarely, if ever exceed their aerobic limits. To evaluate the response to predators I used controlled playback experiments to examine the behavioral responses of 10 of the tagged short-finned pilot whales off Cape Hatteras, North Carolina and 4 Risso’s dolphins (Grampus griseus) off Southern California to the calls of mammal-eating killer whales (MEK). Both species responded to a subset of MEK calls with increased movement, swim speed and increased cohesion of the focal groups, but the two species exhibited different directional movement and vocal responses. Pilot whales increased their call rate and approached the sound source, but Risso’s dolphins exhibited no change in their vocal behavior and moved in a rapid, directed manner away from the source. Thus, at least to a sub-set of mammal-eating killer whale calls, these two study species reacted in a manner that is consistent with their patterns of social organization. Pilot whales, which live in relatively permanent groups bound by strong social bonds, responded in a manner that built on their high levels of social cohesion. In contrast, Risso’s dolphins exhibited an exaggerated flight response and moved rapidly away from the sound source. The fact that both species responded strongly to a select number of MEK calls, suggests that structural features of signals play critical contextual roles in the probability of response to potential threats in odontocete cetaceans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] In recent years, information about the movements and timing of migration by male sea turtles has begun to be unraveled. Here, we present the first satellite tracking of male loggerhead sea turtles (Caretta caretta) in the eastern Atlantic. Satellite linked transmitters were attached to five adult males, captured in the near shore waters off Boavista, Republic of Cape Verde. This archipelago hosts the single most important breeding site of loggerhead turtles in the eastern Atlantic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aerial surveys were conducted in 1999 and 2000 to estimate the densities of ringed (Phoca hispida) and bearded (Erignathus barbatus) seals in the eastern Chukchi Sea. Survey lines were focused mainly on the coastal zone within 37 km of the shoreline, with additional lines flown 148–185 km offshore to assess how densities of seals changed as a function of distance from shore. Satellite-linked time-depth recorders were attached to ringed seals in both years to evaluate the time spent basking on the ice surface. Haulout patterns indicated that ringed seals transitioned to basking behavior in late May and early June, and that the largest proportion of seals (60–68%) was hauled out between 0830 and 1530 local solar time. Ringed seals were relatively common in nearshore fast ice and pack ice, with lower densities in offshore pack ice. The average density of ringed seals was 1.91 seals km-2 in 1999 (range 0.37– 16.32) and 1.62 seals km-2 in 2000 (range 0.42–19.4), with the highest densities of ringed seals found in coastal waters south of Kivalina and near Kotzebue Sound. The estimated abundance of ringed seals for the entire study area was similar in 1999 (252,488 seals, SE=47,204) and 2000 (208,857 seals, SE=25,502). Bearded seals were generally more common in offshore pack ice, with the exception of high bearded seal numbers observed near the shore south of Kivalina. Bearded seal densities were not adjusted for haulout behavior, and therefore, abundance was not estimated. Unadjusted average bearded seal density was 0.07 seals km-2 in 1999 (range 0.011–0.393) and 0.14 seals km-2 in 2000 (range 0.009– 0.652). Levels of primary productivity, benthic biomass, and fast ice distribution may influence the distributions of ringed and bearded seals in the Chukchi Sea. Information on movement and haulout behavior of ringed and bearded seals would be very useful for designing future surveys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Population structure and patterns of habitat use among ringed seals (Phoca hispida) are poorly known, in part because seasonal movements have not been adequately documented. We monitored the movements of 98 ringed seals in the Beaufort and Chukchi seas between 1990 and 2006 using three forms of telemetry. In the winter—spring period (when the seals were occupying shorefast ice), we used radio and ultra-sonic tags to track movements above and below the ice, respectively. We used satellite-linked transmitters in summer and fall (when the seals ranged away from their winter sites) to track at-sea movements. In the shorefast ice habitat, the home ranges of 27 adult males ranged from\1 to 13.9 km2 (median = 0.628) while the home ranges of 28 adult females ranged from \1 to 27.9 km2 (median = 0.652). The 3-dimensional volumes used by 9 seals tracked acoustically under the ice averaged 0.07 (SD = 0.04) km3 for subadults and adult males and 0.13 (SD = 0.04) km3 for adult females. Three of the radio-tracked seals and 9 tracked by satellite ranged up to 1,800 km from their winter/spring home ranges in summer but returned to the same small (1–2 km2) sites during the ice-bound months in the following year. The restricted movements of ringed seals during the ice-bound season— including the breeding season—limits their foraging activities for most of the year and may minimize gene flow within the species.