925 resultados para ARABIDOPSIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adapted filamentous pathogens such as the oomycetes Hyaloperonospora arabidopsidis (Hpa) and Phytophthora infestans (Pi) project specialized hyphae, the haustoria, inside living host cells for the suppression of host defence and acquisition of nutrients. Accommodation of haustoria requires reorganization of the host cell and the biogenesis of a novel host cell membrane, the extrahaustorial membrane (EHM), which envelops the haustorium separating the host cell from the pathogen. Here, we applied live-cell imaging of fluorescent-tagged proteins labelling a variety of membrane compartments and investigated the subcellular changes associated with accommodating oomycete haustoria in Arabidopsis and N. benthamiana. Plasma membrane-resident proteins differentially localized to the EHM. Likewise, secretory vesicles and endosomal compartments surrounded Hpa and Pi haustoria revealing differences between these two oomycetes, and suggesting a role for vesicle trafficking pathways for the pathogen-controlled biogenesis of the EHM. The latter is supported by enhanced susceptibility of mutants in endosome-mediated trafficking regulators. These observations point at host subcellular defences and specialization of the EHM in a pathogen-specific manner. Defence-associated haustorial encasements, a double-layered membrane that grows around mature haustoria, were frequently observed in Hpa interactions. Intriguingly, all tested plant proteins accumulated at Hpa haustorial encasements suggesting the general recruitment of default vesicle trafficking pathways to defend pathogen access. Altogether, our results show common requirements of subcellular changes associated with oomycete biotrophy, and highlight differences between two oomycete pathogens in reprogramming host cell vesicle trafficking for haustoria accommodation. This provides a framework for further dissection of the pathogen-triggered reprogramming of host subcellular changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polarized epithelia are fundamental to multicellular life. In animal epithelia, conserved junctional complexes establish membrane diffusion barriers, cellular adherence and sealing of the extracellular space. Plant cellular barriers are of independent evolutionary origin. The root endodermis strongly resembles a polarized epithelium and functions in nutrient uptake and stress resistance. Its defining features are the Casparian strips, belts of specialized cell wall material that generate an extracellular diffusion barrier. The mechanisms localizing Casparian strips are unknown. Here we identify and characterize a family of transmembrane proteins of previously unknown function. These 'CASPs' (Casparian strip membrane domain proteins) specifically mark a membrane domain that predicts the formation of Casparian strips. CASP1 displays numerous features required for a constituent of a plant junctional complex: it forms complexes with other CASPs; it becomes immobile upon localization; and it sediments like a large polymer. CASP double mutants display disorganized Casparian strips, demonstrating a role for CASPs in structuring and localizing this cell wall modification. To our knowledge, CASPs are the first molecular factors that are shown to establish a plasma membrane and extracellular diffusion barrier in plants, and represent a novel way of epithelial barrier formation in eukaryotes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microtubule plus-end-tracking proteins (+TIPs) specifically localize to the growing plus-ends of microtubules to regulate microtubule dynamics and functions. A large group of +TIPs contain a short linear motif, SXIP, which is essential for them to bind to end-binding proteins (EBs) and target microtubule ends. The SXIP sequence site thus acts as a widespread microtubule tip localization signal (MtLS). Here we have analyzed the sequence-function relationship of a canonical MtLS. Using synthetic peptide arrays on membrane supports, we identified the residue preferences at each amino acid position of the SXIP motif and its surrounding sequence with respect to EB binding. We further developed an assay based on fluorescence polarization to assess the mechanism of the EB-SXIP interaction and to correlate EB binding and microtubule tip tracking of MtLS sequences from different +TIPs. Finally, we investigated the role of phosphorylation in regulating the EB-SXIP interaction. Together, our results define the sequence determinants of a canonical MtLS and provide the experimental data for bioinformatics approaches to carry out genome-wide predictions of novel +TIPs in multiple organisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wounded leaves communicate their damage status to one another through a poorly understood process of long-distance signalling. This stimulates the distal production of jasmonates, potent regulators of defence responses. Using non-invasive electrodes we mapped surface potential changes in Arabidopsis thaliana after wounding leaf eight and found that membrane depolarizations correlated with jasmonate signalling domains in undamaged leaves. Furthermore, current injection elicited jasmonoyl-isoleucine accumulation, resulting in a transcriptome enriched in RNAs encoding key jasmonate signalling regulators. From among 34 screened membrane protein mutant lines, mutations in several clade 3 GLUTAMATE RECEPTOR-LIKE genes (GLRs 3.2, 3.3 and 3.6) attenuated wound-induced surface potential changes. Jasmonate-response gene expression in leaves distal to wounds was reduced in a glr3.3 glr3.6 double mutant. This work provides a genetic basis for investigating mechanisms of long-distance wound signalling in plants and indicates that plant genes related to those important for synaptic activity in animals function in organ-to-organ wound signalling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ambient light conditions trigger both developmental transitions, such as the induction of flowering, and a suite of adaptive responses, exemplified by the shade-avoidance syndrome. These responses are initiated by three families of photoreceptors that are conserved in all higher plants: the phototropins, cryptochromes and phytochromes (phyA--phyE, cry1--cry3, phot1 and phot2 in Arabidopsis). Molecular genetic studies performed mainly in Arabidopsis indicate that photon capture by these light sensors usually initiates rapid changes in the gene expression profile, leading to plant adaptation to their environment. Interestingly, numerous transcription factors are early targets of light regulation, both at the transcriptional and post-transcriptional levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All higher plants possess multiple phytochrome photoreceptors, with phytochrome A (phyA) being light labile and other members of the family being relatively light stable (phyB-phyE in Arabidopsis [Arabidopsis thaliana]). phyA also differs from other members of the family because it enables plants to deetiolate in far-red light-rich environments typical of dense vegetational cover. Later in development, phyA counteracts the shade avoidance syndrome. Light-induced degradation of phyA favors the establishment of a robust shade avoidance syndrome and was proposed to be important for phyA-mediated deetiolation in far-red light. phyA is ubiquitylated and targeted for proteasome-mediated degradation in response to light. Cullin1 and the ubiquitin E3 ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) have been implicated in this process. Here, we systematically analyze the requirement of cullins in this process and show that only CULLIN1 plays an important role in light-induced phyA degradation. In addition, the role of COP1 in this process is conditional and depends on the presence of metabolizable sugar in the growth medium. COP1 acts with SUPPRESSOR OF PHYTOCHROME A (SPA) proteins. Unexpectedly, the light-induced decline of phyA levels is reduced in spa mutants irrespective of the growth medium, suggesting a COP1-independent role for SPA proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The plant hormones auxin and brassinosteroid are both essential regulators of plant growth and known to influence both cell division and cell elongation in various developmental contexts. These physiological effects of auxin and brassinosteroid have been known for many years. Based on observations from external simultaneous application of both hormones to plant tissues, it has been suggested that they act in an interdependent and possibly synergistic manner. Recent work in the model plant Arabidopsis thaliana suggests that, at the molecular level, auxin-brassinosteroid synergism manifests itself in the regulation of the expression of common target genes. However, whether this reflects genuine hormone pathway-dependent crosstalk modulation of the transcription machinery or rather indirect effects of hormone action on other cellular activities, such as hormone biosynthesis or the polar transport of auxin, is not entirely clear. This article reviews the evidence for transcriptional crosstalk between auxin and brassinosteroid and its molecular basis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phototropism allows plants to orient their photosynthetic organs towards the light. In Arabidopsis, phototropins 1 and 2 sense directional blue light such that phot1 triggers phototropism in response to low fluence rates, while both phot1 and phot2 mediate this response under higher light conditions. Phototropism results from asymmetric growth in the hypocotyl elongation zone that depends on an auxin gradient across the embryonic stem. How phototropin activation leads to this growth response is still poorly understood. Members of the phytochrome kinase substrate (PKS) family may act early in this pathway, because PKS1, PKS2 and PKS4 are needed for a normal phototropic response and they associate with phot1 in vivo. Here we show that PKS proteins are needed both for phot1- and phot2-mediated phototropism. The phototropic response is conditioned by the developmental asymmetry of dicotyledonous seedlings, such that there is a faster growth reorientation when cotyledons face away from the light compared with seedlings whose cotyledons face the light. The molecular basis for this developmental effect on phototropism is unknown; here we show that PKS proteins play a role at the interface between development and phototropism. Moreover, we present evidence for a role of PKS genes in hypocotyl gravi-reorientation that is independent of photoreceptors. pks mutants have normal levels of auxin and normal polar auxin transport, however they show altered expression patterns of auxin marker genes. This situation suggests that PKS proteins are involved in auxin signaling and/or lateral auxin redistribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We provide here a detailed protocol for studying the changes in electrical surface potential of leaves. This method has been developed over the years by plant physiologists and is currently used in different variants in many laboratories. The protocol records surface potential changes to measure long-distance electrical signals induced by diverse stimuli such as leaf wounding or current injection. This technique can be used to determine signaling speeds, to measure the connectivity between different plant organs and-by exploiting mutant plants-to identify transporters and ion channels involved in electrical signaling. The approach can be combined with the analysis of mRNA expression and of metabolite concentrations to correlate electrical signaling to specific physiological events. We describe how to use this protocol on Arabidopsis, looking at the effects of leaf wounding; however, it is broadly applicable to other plants and can be used to study other aspects of plant physiology. After wound infliction, surface potential recording takes ∼20 min per plant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wound responses in plants have to be coordinated between organs so that locally reduced growth in a wounded tissue is balanced by appropriate growth elsewhere in the body. We used a JASMONATE ZIM DOMAIN 10 (JAZ10) reporter to screen for mutants affected in the organ-specific activation of jasmonate (JA) signaling in Arabidopsis thaliana seedlings. Wounding one cotyledon activated the reporter in both aerial and root tissues, and this was either disrupted or restricted to certain organs in mutant alleles of core components of the JA pathway including COI1, OPR3, and JAR1. In contrast, three other mutants showed constitutive activation of the reporter in the roots and hypocotyls of unwounded seedlings. All three lines harbored mutations in Novel Interactor of JAZ (NINJA), which encodes part of a repressor complex that negatively regulates JA signaling. These ninja mutants displayed shorter roots mimicking JA-mediated growth inhibition, and this was due to reduced cell elongation. Remarkably, this phenotype and the constitutive JAZ10 expression were still observed in backgrounds lacking the ability to synthesize JA or the key transcriptional activator MYC2. Therefore, JA-like responses can be recapitulated in specific tissues without changing a plant's ability to make or perceive JA, and MYC2 either has no role or is not the only derepressed transcription factor in ninja mutants. Our results show that the role of NINJA in the root is to repress JA signaling and allow normal cell elongation. Furthermore, the regulation of the JA pathway differs between roots and aerial tissues at all levels, from JA biosynthesis to transcriptional activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The root system is fundamentally important for plant growth and survival because of its role in water and nutrient uptake. Therefore, plants rely on modulation of root system architecture (RSA) to respond to a changing soil environment. Although RSA is a highly plastic trait and varies both between and among species, the basic root system morphology and its plasticity are controlled by inherent genetic factors. These mediate the modification of RSA, mostly at the level of root branching, in response to a suite of biotic and abiotic factors. Recent progress in the understanding of the molecular basis of these responses suggests that they largely feed through hormone homeostasis and signaling pathways. Novel factors implicated in the regulation of RSA in response to the myriad endogenous and exogenous signals are also increasingly isolated through alternative approaches such as quantitative trait locus analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants naturally produce the lipid-derived polyester cutin, which is found in the plant cuticle that is deposited at the outermost extracellular matrix of the epidermis covering nearly all aboveground tissues. Being at the interface between the cell and the external environment, cutin and the cuticle play important roles in the protection of plants from several stresses. A number of enzymes involved in the synthesis of cutin monomers have recently been identified, including several P450s and one acyl-CoA synthetase, thus representing the first steps toward the understanding of polyester formation and, potentially, polyester engineering to improve the tolerance of plants to stresses, such as drought, and for industrial applications. However, numerous processes underlying cutin synthesis, such as a controlled polymerization, still remain elusive. Suberin is a second polyester found in the extracellular matrix, most often synthesized in root tissues and during secondary growth. Similar to cutin, the function of suberin is to seal off the respective tissue to inhibit water loss and contribute to resistance to pathogen attack. Being the main constituent of cork, suberin is a plant polyester that has already been industrially exploited. Genetic engineering may be worth exploring in order to change the polyester properties for either different applications or to increase cork production in other species. Polyhydroxyalkanoates (PHAs) are attractive polyesters of 3-hydroxyacids because of their properties as bioplastics and elastomers. Although PHAs are naturally found in a wide variety of bacteria, biotechnology has aimed at producing these polymers in plants as a source of cheap and renewable biodegradable plastics. Synthesis of PHA containing various monomers has been demonstrated in the cytosol, plastids, and peroxisomes of plants. Several biochemical pathways have been modified in order to achieve this, including the isoprenoid pathway, the fatty acid biosynthetic pathway, and the fatty acid β-oxidation pathway. PHA synthesis has been demonstrated in a number of plants, including monocots and dicots, and up to 40% PHA per gram dry weight has been demonstrated in Arabidopsis thaliana. Despite some successes, production of PHA in crop plants remains a challenging project. PHA synthesis at high level in vegetative tissues, such as leaves, is associated with chlorosis and reduced growth. The challenge for the future is to succeed in synthesis of PHA copolymers with a narrow range of monomer compositions, at levels that do not compromise plant productivity. This goal will undoubtedly require a deeper understanding of plant biochemical pathways and how carbon fluxes through these pathways can be manipulated, areas where plant "omics" can bring very valuable contributions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHAs) are bacterial polyesters having the properties of biodegradable thermoplastics and elastomers. Synthesis of PHAs has been demonstrated in transgenic plants. Both polyhydroxybutyrate and the co-polymer poly(hydroxybutyrate-co-hydroxyvalerate) have been synthesized in the plastids of Arabidopsis thaliana and Brassica napus. Furthermore, a range of medium-chain-length PHAs has also been produced in plant peroxisomes. Development of agricultural crops to produce PHA on a large scale and at low cost will be a challenging task requiring a coordinated and stable expression of several genes. Novel extraction methods designed to maximize the use of harvested plants for PHA, oil, carbohydrate, and feed production will be needed. In addition to their use as plastics, PHAs can also be used to modify fiber properties in plants such as cotton. Furthermore, PHA can be exploited as a novel tool to study the carbon flux through various metabolic pathways, such as the fatty acid beta-oxidation cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phytochromes are red/far-red photosensors that regulate numerous developmental programs in plants. Among them, phytochrome A (phyA) is essential to enable seedling de-etiolation under continuous far-red (FR) light, a condition that mimics the environment under a dense canopy. The ecological relevance of this response is demonstrated by the high mortality rate of phyA mutant plants that germinate in deep vegetational shade. phyA signaling involves direct interaction of the photoreceptor with phytochrome-interacting factors PIF1 and PIF3, members of the bHLH transcription factor family. Here we investigated the involvement of PIF4 and PIF5 in phyA signaling, and found that they redundantly control de-etiolation in FR light. The pif4 pif5 double mutant is hypersensitive to low fluence rates of FR light. This phenotype is dependent on FR light perception by phyA, but does not rely on alterations in the phyA level. Our microarray analysis shows that PIF4 and PIF5 are part of an inhibitory mechanism that represses the expression of some light-responsive genes in the dark, and that they are also needed for full expression of several growth-related genes in the light. Unlike PIF1 and PIF3, PIF4 and PIF5 are not degraded in response to FR light, indicating that they are light-regulated by a different mechanism. Our genetic analysis suggests that this is achieved through sequestration of these PIFs by the closely related bHLH transcription factor HFR1 (long hypocotyl in FR light).