896 resultados para ANIMAL FEEDS
Resumo:
dTwo genetic constructs used to confer improved agronomic characteristics, namely herbicide tolerance (HT) in maize and soyabean and insect resistance (Bt) in maize, are considered in respect of feeding to farm livestock, animal performance and the nutritional value and safety of animal products. A review of nucleic acid (DNA) and protein digestion in farm livestock concludes that the frequency of intact transgenic DNA and proteins of GM and non-GM crops being absorbed is minimal/non existent, although there is some evidence of the presence of short fragments of rubisco DNA of non-GM soya in animal tissues. It has been established that feed processing (especially heat) prior to feeding causes significant disruption of plant DNA. Studies with ruminant and non-ruminant farm livestock offered GM feeds demonstrated that animal performance and product composition are unaffected and that there is no evidence of transgenic DNA or proteins of current GM in the products of animals consuming such feeds. On this evidence, current HT and Bt constructs represent no threat to the health of animals, or humans consuming the products of such animals. However as new GM constructs become available it will be necessary to subject these to rigorous evaluation.
Resumo:
This paper presents the method and findings of a contingent valuation (CV) study that aimed to elicit United Kingdom citizens' willingness to pay to support legislation to phase out the use of battery cages for egg production in the European Union (EU). The method takes account of various biases associated with the CV technique, including 'warm glow', 'part-whole' and sample response biases. Estimated mean willingness to pay to support the legislation is used to estimate the annual benefit of the legislation to UK citizens. This is compared with the estimated annual costs of the legislation over a 12-year period, which allows for readjustment by the UK egg industry. The analysis shows that the estimated benefits of the legislation outweigh the costs. The study demonstrates that CV is a potentially useful technique for assessing the likely benefits associated with proposed legislation. However, estimates of CV studies must be treated with caution. It is important that they are derived from carefully designed surveys and that the willingness to pay estimation method allows for various biases. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The paper presents the method and findings of a Delphi expert survey to assess the impact of UK government farm animal welfare policy, form assurance schemes and major food retailer specifications on the welfare of animals on forms. Two case-study livestock production systems are considered, dairy and cage egg production. The method identifies how well the various standards perform in terms of their effects on a number of key farm animal welfare variables, and provides estimates of the impact of the three types of standard on the welfare of animals on forms, taking account of producer compliance. The study highlights that there remains considerable scope for government policy, together with form assurance schemes, to improve the welfare of form animals by introducing standards that address key factors affecting animal welfare and by increasing compliance of livestock producers. There is a need for more comprehensive, regular and random surveys of on-farm welfare to monitor compliance with welfare standards (legislation and welfare codes) and the welfare of farm animals over time, and a need to collect farm data on the costs of compliance with standards.
Resumo:
During the last 2 decades, the public and private sectors have made substantial international research progress toward improving the nutritional value of a wide range of food and feed crops. Nevertheless, significant numbers of people still suffer from the effects of undernutrition. In addition, the nutritional quality of feed is often a limiting factor in livestock production systems, particularly those in developing countries. As newly developed crops with nutritionally improved traits come closer to being available to producers and consumers, we must ensure that scientifically sound and efficient processes are used to assess the safety and nutritional quality of these crops. Such processes will facilitate deploying these crops to those world areas with large numbers of people who need them. This document describes 5 case studies of crops with improved nutritional value. These case studies examine the principles and recommendations published by the Intl. Life Sciences Inst. (ILSI) in 2004 for the safety and nutritional assessment of foods and feeds derived from nutritionally improved crops (ILSI 2004). One overarching conclusion that spans all 5 case studies is that the comparative safety assessment process is a valid approach. Such a process has been endorsed by many publications and organizations, including the 2004 ILSI publication. The type and extent of data that are appropriate for a scientifically sound comparative safety assessment are presented on a case-by-case basis in a manner that takes into account scientific results published since the 2004 ILSI report. This report will appear in the January issue of Comprehensive Reviews in Food Science and Food Safety.
Resumo:
A method is proposed to determine the extent of degradation in the rumen involving a two-stage mathematical modeling process. In the first stage, a statistical model shifts (or maps) the gas accumulation profile obtained using a fecal inoculum to a ruminal gas profile. Then, a kinetic model determines the extent of degradation in the rumen from the shifted profile. The kinetic model is presented as a generalized mathematical function, allowing any one of a number of alternative equation forms to be selected. This method might allow the gas production technique to become an approach for determining extent of degradation in the rumen, decreasing the need for surgically modified animals while still maintaining the link with the animal. Further research is needed before the proposed methodology can be used as a standard method across a range of feeds.
Resumo:
Current feed evaluation systems for dairy cattle aim to match nutrient requirements with nutrient intake at pre-defined production levels. These systems were not developed to address, and are not suitable to predict, the responses to dietary changes in terms of production level and product composition, excretion of nutrients to the environment, and nutrition related disorders. The change from a requirement to a response system to meet the needs of various stakeholders requires prediction of the profile of absorbed nutrients and its subsequent utilisation for various purposes. This contribution examines the challenges to predicting the profile of nutrients available for absorption in dairy cattle and provides guidelines for further improved prediction with regard to animal production responses and environmental pollution. The profile of nutrients available for absorption comprises volatile fatty acids, long-chain fatty acids, amino acids and glucose. Thus the importance of processes in the reticulo-rumen is obvious. Much research into rumen fermentation is aimed at determination of substrate degradation rates. Quantitative knowledge on rates of passage of nutrients out of the rumen is rather limited compared with that on degradation rates, and thus should be an important theme in future research. Current systems largely ignore microbial metabolic variation, and extant mechanistic models of rumen fermentation give only limited attention to explicit representation of microbial metabolic activity. Recent molecular techniques indicate that knowledge on the presence and activity of various microbial species is far from complete. Such techniques may give a wealth of information, but to include such findings in systems predicting the nutrient profile requires close collaboration between molecular scientists and mathematical modellers on interpreting and evaluating quantitative data. Protozoal metabolism is of particular interest here given the paucity of quantitative data. Empirical models lack the biological basis necessary to evaluate mitigation strategies to reduce excretion of waste, including nitrogen, phosphorus and methane. Such models may have little predictive value when comparing various feeding strategies. Examples include the Intergovernmental Panel on Climate Change (IPCC) Tier II models to quantify methane emissions and current protein evaluation systems to evaluate low protein diets to reduce nitrogen losses to the environment. Nutrient based mechanistic models can address such issues. Since environmental issues generally attract more funding from governmental offices, further development of nutrient based models may well take place within an environmental framework.
Resumo:
Foods derived from animals are an important source of nutrients in the diet; for example, milk and meat together provide about 60 and 55% of the dietary intake of Ca and protein respectively in the UK. However, certain aspects of some animal-derived foods, particularly their fat and saturated fatty acid (SFA) contents, have led to concerns that these foods substantially contribute to the risk of CVD, the metabolic syndrome and other chronic diseases. In most parts of Europe dairy products are the greatest single dietary source of SFA. The fatty acid composition of various animal-derived foods is, however, not constant and can, in many cases, be enhanced by animal nutrition. In particular, milk fat with reduced concentrations of the C12-16 SFA and an increased concentration of 18:1 MUFA is achievable, although enrichment with very-long-chain n-3 PUFA is much less efficient. However, there is now evidence that some animal-derived foods (notably milk products) contain compounds that may actively promote long-term health, and research is urgently required to fully characterise the benefits associated with the consumption of these compounds and to understand how the levels in natural foods can be enhanced. It is also vital that the beneficial effects are not inadvertently destroyed in the process of reducing the concentrations of SFA. In the future the role of animal nutrition in creating foods closer to the optimum composition for long-term human health is likely to become increasingly important, but production of such foods on a scale that will substantially affect national diets will require political and financial incentives and great changes in the animal production industry.