861 resultados para AFM, Elasticity, Apical Membrane, Indentation
Resumo:
A procedure for separation and preconcentration of trace amounts of Zn(II) from aqueous media is proposed. The procedure is based on the adsorption of Zn2+ on octadecyl bonded silica membrane disk modified with N,N'-disalicylidene-1,2-phenylendiamine at pH 7. The retained zinc ions were then stripped from the disk with a minimal amount of 1.5 mol L-1 hydrochloric acid solution as eluent, and determined by flame atomic absorption spectrometry. Maximum capacity of the membrane disk modified with 5 mg of the ligand was found to be 226 µg Zn2+. The relative standard deviation of zinc for ten replicate extraction of 10 µg zinc from 1000 mL samples was 1.2%. The limit of detection of the proposed method was 14 ng of Zn2+ per 1000 mL. The method was successfully applied to the determination of zinc in natural water samples and accuracy was examined by recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry (GFAAS).
Resumo:
There are several filtration applications in the pulp and paper industry where the capacity and cost-effectiveness of processes are of importance. Ultrafiltration is used to clean process water. Ultrafiltration is a membrane process that separates a certain component or compound from a liquid stream. The pressure difference across the membrane sieves macromolecules smaller than 0.001-0.02 μm through the membrane. When optimizing the filtration process capacity, online information about the conditions of the membrane is needed. Fouling and compaction of the membrane both affect the capacity of the filtration process. In fouling a “cake” layer starts to build on the surface of the membrane. This layer blocks the molecules from sieving through the membrane thereby decreasing the yield of the process. In compaction of the membrane the structure is flattened out because of the high pressure applied. The higher pressure increases the capacity but may damage the structure of the membrane permanently. Information about the compaction is needed to effectively operate the filters. The objective of this study was to develop an accurate system for online monitoring of the condition of the membrane using ultrasound reflectometry. Measurements of ultrafiltration membrane compaction were made successfully utilizing ultrasound. The results were confirmed by permeate flux decline, measurements of compaction with a micrometer, mechanical compaction using a hydraulic piston and a scanning electron microscope (SEM). The scientific contribution of this thesis is to introduce a secondary ultrasound transducer to determine the speed of sound in the fluid used. The speed of sound is highly dependent on the temperature and pressure used in the filters. When the exact speed of sound is obtained by the reference transducer, the effect of temperature and pressure is eliminated. This speed is then used to calculate the distances with a higher accuracy. As the accuracy or the resolution of the ultrasound measurement is increased, the method can be applied to a higher amount of applications especially for processes where fouling layers are thinner because of smaller macromolecules. With the help of the transducer, membrane compaction of 13 μm was measured in the pressure of 5 bars. The results were verified with the permeate flux decline, which indicated that compaction had taken place. The measurements of compaction with a micrometer showed compaction of 23–26 μm. The results are in the same range and confirm the compaction. Mechanical compaction measurements were made using a hydraulic piston, and the result was the same 13 μm as obtained by applying the ultrasound time domain reflectometry (UTDR). A scanning electron microscope (SEM) was used to study the structure of the samples before and after the compaction.
Resumo:
As it is known, the major problem of membrane filtration is fouling of membrane during the filtration process. There are a lot of methods to prevent or reduce fouling. One very little studied method is applying of magnetic field in membrane filtration. Magnetic field has such advantages as bulk, contact free, nondestructive impact on the sample, thus it can be combined with different types of processes. In addition, the use of magnetic fields has given positive results in various areas of science and life. So, the present thesis is devoted to the research of influence of magnetic field on performances of nanofiltration. In the literature part of the thesis a short description of membrane process and mechanism of reorientation of nanoparticals in magnetic field is presented. The utilization of magnetic field in different spheres of life, in general, and membrane area, in particular, is represented. In the experimental part the influence of magnetic field created by two permanent magnets on filtration of two solutions (citric acid and sodium dodecyl sulfate) was investigated. Factors, which affect on the impact of magnetic field was estimated. The effect of magnetic field was evaluated by measuring a change of pure water permeability after the filtration of model solution. This work demonstrated that direction of magnetic field and the type of molecules of filtered solution has significant effect to the efficiency of nanofiltration. Utilization of magnetic field might increase retention of membrane and flux through membrane and reduce fouling.
Resumo:
The search for new renewable materials has intensified in recent years. Pulp and paper mill process streams contain a number of potential compounds which could be used in biofuel production and as raw materials in the chemical, food and pharmaceutical industries. Prior to utilization, these compounds require separation from other compounds present in the process stream. One feasible separation technique is membrane filtration but to some extent, fouling still limits its implementation in pulp and paper mill applications. To mitigate fouling and its effects, foulants and their fouling mechanisms need to be well understood. This thesis evaluates fouling in filtration of pulp and paper mill process streams by means of polysaccharide model substance filtrations and by development of a procedure to analyze and identify potential foulants, i.e. wood extractives and carbohydrates, from fouled membranes. The model solution filtration results demonstrate that each polysaccharide has its own fouling mechanism, which also depends on the membrane characteristics. Polysaccharides may foul the membranes by adsorption and/or by gel/cake layer formation on the membrane surface. Moreover, the polysaccharides interact, which makes fouling evaluation of certain compound groups very challenging. Novel methods to identify wood extractive and polysaccharide foulants are developed in this thesis. The results show that it is possible to extract and identify wood extractives from membranes fouled in filtration of pulp and paper millstreams. The most effective solvent was found to be acetone:water (9:1 v/v) because it extracted both lipophilic extractives and lignans at high amounts from the fouled membranes and it was also non-destructive for the membrane materials. One hour of extraction was enough to extract wood extractives at high amounts for membrane samples with an area of 0.008 m2. If only qualitative knowledge of wood extractives is needed a simplified extraction procedure can be used. Adsorption was the main fouling mechanism in extractives-induced fouling and dissolved fatty and resin acids were mostly the reason for the fouling; colloidal fouling was negligible. Both process water and membrane characteristics affected extractives-induced fouling. In general, the more hydrophilic regenerated cellulose (RC) membrane fouled less that the more hydrophobic polyethersulfone (PES) and polyamide (PA) membranes independent of the process water used. Monosaccharide and uronic acid units could also be identified from the fouled synthetic polymeric membranes. It was impossible to analyze all monosaccharide units from the RC membrane because the analysis result obtained contained degraded membrane material. One of the fouling mechanisms of carbohydrates was adsorption. Carbohydrates were not potential adsorptive foulants to the sameextent as wood extractives because their amount in the fouled membranes was found to be significantly lower than the amount of wood extractives.
Resumo:
Currently, the standards that deal with the determination of the properties of rigidity and strength for structural round timber elements do not take in consideration in their calculations and mathematical models the influence of the existing irregularities in the geometry of these elements. This study has as objective to determine the effective value of the modulus of longitudinal elasticity for structural round timber pieces of the Eucalyptus citriodora genus by a technique of optimization allied to the Inverse Analysis Method, to the Finite Element Method and the Least Square Method.
Resumo:
Round timber has great use in civil construction, performing the function of beams, columns, foundations, poles for power distribution among others, with the advantage of not being processed, such as lumber. The structural design of round timber requires determining the elastic properties, mainly the modulus of elasticity. The Brazilian standards responsible for the stiffness and strength determination of round timber are in effect for over twenty years with no technical review. Round timber, for generally present an axis with non-zero curvature according to the position of the element in the bending test, may exhibit different values of modulus of elasticity. This study aims to analyze the position effect of Eucalyptus grandis round timber on the flexural modulus of elasticity. The three-point bending test was evaluated in two different positions based on the longitudinal rotation of the round timber element. The results revealed that at least two different positions of the round timber element are desired to obtain significant modulus of elasticity.
Resumo:
This study aims to present an alternative calculation methodology based on the Least Squares Method for determining the modulus of elasticity in bending wooden beams of structural dimensions. The equations developed require knowledge of three or five points measured in displacements along the piece, allowing greater reliability on the response variable, using the statistical bending test at three points and non-destructively, resulting from imposition of measures from small displacements L/300 and L/200, the largest being stipulated by the Brazilian norm NBR 7190:1997. The woods tested were Angico, Cumaru, Garapa and Jatoba. Besides obtaining the modulus of elasticity through the alternative methodology proposed, these were also obtained employing the Brazilian norm NBR 7190:1997, adapted to the condition of non-destructive testing (small displacements) and for pieces of structural dimensions. The results of the modulus of elasticity of the four species of wood according to both calculation approaches used proved to be equivalent, implying the good approximation provided by the methodology of calculation adapted from the Brazilian norm.
Resumo:
ABSTRACT Total Ammoniacal Nitrogen - TAN (NH3 + NH4+) in wastewaters cause environmental degradation concerns due to their negative impacts on air, soil and water. Several technologies are available for TAN removal from the wastewaters. One emerging technology is the use of hydrophobic membrane as non-destructive NH3 extraction. In this paper the authors discuss the uses of gas permeable membrane (GPM) and its physicochemical characteristics that influence gas mass transfer rate, diffusion and recovery mechanisms of NH3 from liquid sources (e.g. animal wastewater). Several aspects of NH3 extraction from liquid manure and other TAN generation sources using GPM technology as well as its applicability for NH3 mitigation from liquid effluents and possible recovery as a nutrient for plant growth are also discussed in this review.
Resumo:
OBJECTIVE: to evaluate the efficacy of the amniotic membrane used with polypropylene mesh against the formation of adhesions and its influence on healing. METHODS: twenty five female Wistar rats were anesthetized for creating a parietal defect in the anterior abdominal wall. Its correction was made with polypropylene mesh alone and associated with amniotic membrane. In the control group (n=11), the screen was inserted alone. In group A (n=7) we interposed the amniotic membrane between the screen and the abdominal wall. In group B, the amniotic membrane was placed on the mesh, covering it. After seven days, the animals were euthanized for macroscopic and microscopic evaluation of healing. RESULTS: adhesions were observed in all animals except one in the control group. Severe inflammation was observed in all animals in groups A and B and in three of the control group, with significant difference between them (A and B with p=0.01). Pronounced angiogenic activity was noted in one animal in the control group, six in group A and four in group B, with a significant difference between the control group and group A (p=0.002) and group B (p=0.05). The scar collagen was predominantly mature, except in five animals of the control group, with significant difference between the control group and group A (p=0.05) and group B (p=0.05). CONCLUSION: The amniotic membrane did not alter the formation of adhesions in the first postoperative week. There were also pronounced inflammation, high angiogenic activity and predominance of mature collagen fibers, regardless of the anatomical plane that it was inserted in.
Resumo:
The objective of the study was to evaluate the topical effects of 0.2% Cyclosporine A (CsA) on corneal neovascularization of rats following surgical implantation of equine amniotic membrane into a corneal stroma micropocket. The implantation of xenologous amniotic membrane was performed bilaterally in 90 rats. In the same day of the surgery each right eye started receiving topical CsA twice a day. The left eye received no medication and served as a control. The evaluation of corneal neovascularization was performed by computerized image analysis and histopathological evaluation at 1, 3, 7, 15, 30 and 60 days postoperatively. For the image analysis 10 animals were used per time period, and for the histopathological examination, five animals were used per time period. Image analysis found that corneal neovascularization began on the 3rd postoperative day, reached its peak on the 7th day, and then progressively and rapidly decreased. Statistic analysis indicated that neovascularization of the CsA treated eye on the 7th day was significantly higher than that observed in untreated eyes. On the 30th day, however, this pattern was reversed with the neovascularization observed in the CsA treated eyes declining to the low levels observed on the 3rd day. The degree of neovascularization in the untreated eyes on the 30th day declined to the baseline levels found on day 3 at the 60th day. Histopathological analysis indicated that deposition of collagen in the implanted tissue was completed by the 15th day. Therefore, we concluded that (1) equine amniotic membrane in rat corneal stroma produced an intense neovascularization until the 15th day postoperatively and then regressed, (2) deposition of collagen of the implanted tissue was completed on the 15th day postoperatively, and (3) use of CsA was associated with increase in the corneal neovascularization initially, followed by a quick and intense regression.
Resumo:
An outbreak of Lawsonia intracellularis infection in rabbits, which occurred in 1988 in Rio de Janeiro state, Brazil, is reported. The disease had an acute course (24-48 hours) with clinical signs characterized by brownish or green diarrhea and dehydration. Occasionally, the animals died one day after the onset of diarrhea, without showing any other clinical signs. At necropsy, the ileum was prominent, firm and had a thickened wall; it was dilated in the caudal direction and had a somewhat reticulated appearance, perceptible through the serosa. The thickened mucous membrane had finely corrugated aspect and a shiny surface. The ileocecal valve and surrounding areas were slightly edematous and irregular. The Peyer's patches were sometimes more evident. There was moderate enlargement of the mesenteric lymph nodes. The histological examination revealed different degrees of hyperplasia of the epithelial cells of intestinal crypts consisting of poorly differentiated, hyperchromatic cells with high mitotic index, arranged in a pseudostratified layer which, in some cases, reached the apical portions of the villi. The inflammatory infiltrate between the hyperplastic epithelial cells was composed of lymphocytes, plasma cells, macrophages, some eosinophils and globular leukocytes. Silver impregnation revealed large numbers of bacteria with morphology of the genus Lawsonia in the apical pole of cryptal enterocytes. These bacteria reacted positively to a Lawsonia intracellularis polyclonal antibody by the avidin-biotin immunohistochemistry method.
Resumo:
The efficacy of three vaccines was evaluated in chickens for the control of experimental infection with Salmonella Enteritidis (SE) phage type 4. The vaccines were produced with bacterin, outer membrane proteins (OMP) and fimbriae crude extract (FE). The chickens were vaccinated intramuscularly with two doses of each vaccine at 12 and 15 weeks of age. The chickens were then orally challenged with 10(9) CFU/chicken Salmonella Enteritidis phage type 4 at 18 weeks of age. Fecal swabs were performed for the recovery of shedding SE, and SE was recovered from the liver and spleen. Additionally, antibody titers were measured in the serum by micro-agglutination test. The results indicated that the vaccine produced with bacterin yielded better results and resulted in reduction of fecal shedding and organ invasion by SE after oral challenge, although no vaccine was 100% effective for the control of SE experimental infection.
Resumo:
This paper presents an HP-Adaptive Procedure with Hierarchical formulation for the Boundary Element Method in 2-D Elasticity problems. Firstly, H, P and HP formulations are defined. Then, the hierarchical concept, which allows a substantial reduction in the dimension of equation system, is introduced. The error estimator used is based on the residual computation over each node inside an element. Finally, the HP strategy is defined and applied to two examples.
Resumo:
Utilization of biomass-based raw materials for the production of chemicals and materials is gaining an increasing interest. Due to the complex nature of biomass, a major challenge in its refining is the development of efficient fractionation and purification processes. Preparative chromatography and membrane filtration are selective, energy-efficient separation techniques which offer a great potential for biorefinery applications. Both of these techniques have been widely studied. On the other hand, only few process concepts that combine the two methods have been presented in the literature. The aim of this thesis was to find the possible synergetic effects provided by combining chromatographic and membrane separations, with a particular interest in biorefinery separation processes. Such knowledge could be used in the development of new, more efficient separation processes for isolating valuable compounds from complex feed solutions that are typical for the biorefinery environment. Separation techniques can be combined in various ways, from simple sequential coupling arrangements to fully-integrated hybrid processes. In this work, different types of combined separation processes as well as conventional chromatographic separation processes were studied for separating small molecules such as sugars and acids from biomass hydrolysates and spent pulping liquors. The combination of chromatographic and membrane separation was found capable of recovering high-purity products from complex solutions. For example, hydroxy acids of black liquor were successfully recovered using a novel multistep process based on ultrafiltration and size-exclusion chromatography. Unlike any other separation process earlier suggested for this challenging separation task, the new process concept does not require acidification pretreatment, and thus it could be more readily integrated into a pulp-mill biorefinery. In addition to the combined separation processes, steady-state recycling chromatography, which has earlier been studied for small-scale separations of high-value compounds only, was found a promising process alternative for biorefinery applications. In comparison to conventional batch chromatography, recycling chromatography provided higher product purity, increased the production rate and reduced the chemical consumption in the separation of monosaccharides from biomass hydrolysates. In addition, a significant further improvement in the process performance was obtained when a membrane filtration unit was integrated with recycling chromatography. In the light of the results of this work, separation processes based on combining membrane and chromatographic separations could be effectively applied for different biorefinery applications. The main challenge remains in the development of inexpensive separation materials which are resistant towards harsh process conditions and fouling.
Resumo:
Adrenoceptors (ARs), G-protein coupled receptors (GPCRs) at the plasma membrane, respond to endogenous catecholamines noradrenaline and adrenaline. These receptors mediate several important physiological functions being especially important in the cardiovascular system and in the regulation of smooth muscle contraction. Impairments in the function of these receptors can thus lead to severe diseases and disorders such as to cardiovascular diseases and benign prostatic hyperplasia. The Eastern green mamba (Dendroaspis angusticeps) venom has been shown to contain toxins that can antagonize the functions of GPCRs. The most well-known are muscarinic toxins (MTs) targeting muscarinic acetylcholine receptors (mAChRs) with high affinity and selectivity. However, some reports have indicated that these toxins might also act on the α1- and α2-ARs which can be divided into various subtypes; the α1-ARs to α1A-, α1B- and α1D-ARs and α2-ARs to α2A-, α2B- and α2C-ARs. In this thesis, the interaction of four common MTs (MT1, MT3, MT7 and MTα) with the adrenoceptors was characterized. It was also evaluated whether these toxins could be anchored to the plasma membrane via glycosylphosphatidylinositol (GPI) tail. Results of this thesis reveal that muscarinic toxins are targeting several α-adrenoceptor subtypes in addition to their previously identified target receptors, mAChRs. MTα was found to interact with high affinity and selectivity with the α2B-AR whereas MT7 confirmed its selectivity for the M1 mAChR. Unlike MTα and MT7, MT1 and MT3 have a broad range of target receptors among the α-ARs. All the MTs characterized were found to behave as non-competitive antagonists of receptor action. The interaction between MTα and the α2B-AR was studied more closely and it was observed that the second extracellular loop of the receptor functions as a structural entity enabling toxin binding. The binding of MTα to the α2B-AR appears to be rather complex and probably involves dimerized receptor. Anchoring MTs to the plasma membrane did not interfere with their pharmacological profile; all the GPI-anchored toxins created retained their ability to block their target receptors. This thesis shows that muscarinic toxins are able to target several subtypes of α-ARs and mAChRs. These toxins offer thus a possibility to create new subtype specific ligands for the α-AR subtypes. Membrane anchored MTs on the other hand could be used to block α-AR and mAChR actions in disease conditions such as in hypertension and in gastrointestinal and urinary bladder disorders in a cell-specific manner and to study the physiological functions of ARs and mAChRs in vivo in model organisms.