989 resultados para ADULT-RAT
Resumo:
We have characterized the kinetic properties of ectonucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1) from rat osseous plate membranes. A novel finding of the present study is that the solubilized enzyme shows high- and low-affinity sites for the substrate in contrast with a single substrate site for the membrane-bound enzyme. In addition, contrary to the Michaelian chraracteristics of the membrane-bound enzyme, the site-site interactions after solubilization with 0.5% digitonin plus 0.1% lysolecithin resulted in a less active ectonucleoside triphosphate diphosphohydrolase, showing activity of about 398.3 nmol Pi min(-1) mg(-1). The solubilized enzyme has M(r) of 66-72 kDa, and its catalytic efficiency was significantly increased by magnesium and calcium ions; but the ATP/ADP activity ratio was always < 2.0. Partial purification and kinetic characterization of the rat osseous plate E-NTPDase1 in a solubilized form may lead to a better understanding of a possible function of the enzyme as a modulator of nucleotidase activity or purinergic signaling in matrix vesicle membranes. The simple procedure to obtain the enzyme in a solubilized form may also be attractive for comparative studies of particular features of the active sites from this and other ATPases.
Resumo:
A glycosylphosphatidylinositol (GPI)-anchored enzyme (rat osseous plate alkaline phosphatase-OAP) was studied as monolayer (pure and mixed with lipids) at the air-water interface. Surface pressure and surface potential-area isotherms showed that the enzyme forms a stable monolayer and exhibits a liquid-expanded state even at surface pressure as high as 30 mN m(-1). Isotherms for mixed dimyristoylphosphatidic acid (DMPA)-OAP monolayer showed the absence of a liquid-expanded/liquid-condensed phase transition as observed for pure DMPA monolayer. In both cases, pure or mixed monolayer, the enzyme preserves its native conformation under compression at the air-water interface as observed from in situ p-polarized light Fourier transform-infrared reflection-absorption spectroscopic (FT-IRRAS) measurements. Changes in orientation and conformation of the enzyme due to the presence or absence of DMPA, as well as due to the surface compression, are discussed. (C) 2008 Published by Elsevier Inc.
Resumo:
The effect of intraseptal injections of lidocaine before a first or a second session in the elevated plus-maze, in a test-retest paradigm, was investigated. In addition to gross session analyses, a minute-by-minute analysis of the sessions was used to evaluate both anxiety and memory. Lidocaine injections before the test session produced increases in the frequency of entries, time spent and distance run in the open arms without affecting activity occurring in the closed arms. During the retest session, saline- and lidocaine-treated rats exhibited increased indices of anxiety and lidocaine-treated rats exhibited decreased closed-arm entries. The minute-by-minute analysis showed a faster decrease in anxiety-related behaviors during the test session by saline- than by lidocaine-treated rats and a significant decrease in closed-arm exploration by saline-treated rats, but not by lidocaine-treated ones. Lidocaine injection before the retest session produced increases in the frequency of entries, time spent and distance run in the open arms in the second session when compared with saline-treated rats. Minute-by-minute analysis showed an increase in the time spent in the open arms by lidocaine animals at the beginning of the retest session in comparison to saline animals and a significant decrease in closed-arm exploration by both groups. These results suggest that inactivation of the medial septum by lidocaine affects the expression of unconditioned and conditioned forms of anxiety in the elevated plus-maze and, in a lesser way, the acquisition and retention of spatial information. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Although several reports have demonstrated physiological and behavioral changes in adult rats due to neonatal immune challenges, little is known about their effects in adolescence. Since neonatal exposure to lipopolysaccharide (LPS) alters the neural substrates involved in cognitive disorders, we tested the hypothesis that it may also alter the response to novel environments in adolescent rats. At 3 and 5 days of age, male Wistar rats received intraperitoneal injections of either vehicle solution or E. coli LPS (0.05 mg/kg) or were left undisturbed. In the mid-adolescent period, between 40 and 46 days of age, the rats were exposed to the following behavioral tests: elevated plus-maze, open-field, novel-object exploration task, hole-board and the modified Porsolt forced swim test. The results showed that, in comparison with control animals, LPS-treated rats exhibited (1) less anxiety-related behaviors and enhanced patterns of locomotion and rearing in the plus-maze and the open-field tests, (2) high levels of exploration of both objects in the novel-object task and of corner and central holes in hole-board test, and (3) more time spent diving, an active behavior in the forced swim test. The present findings suggest that neonatal LPS exposure has long-lasting effects on the behavior profile adolescent rats exhibit in response to novelty. This behavioral pattern, characterized by heightened exploratory activity in novel environments, also suggests that early immune stimulation may contribute to the development of impulsive behavior in adolescent rats. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The elevated plus-maze is a device widely used to assess rodent anxiety under the effect of several treatments, including pharmacological agents. The animal is placed at the center of the apparatus, which consists of two open arms and two arms enclosed by walls, and the number of entries and duration of stay in each arm are measured for a 5-min exposure period. The effect of an anxiolytic drug is to increase the percentage of time spent and number of entries into the open arms. In this work, we propose a new measure of anxiety levels in the rat submitted to the elevated plus-maze. We represented the spatial structure of the elevated plus-maze in terms of a directed graph and studied the statistics of the rat`s transitions between the nodes of the graph. By counting the number of times each transition is made and ordering them in descending frequency we represented the rat`s behavior in a rank-frequency plot. Our results suggest that the curves obtained under different pharmacological conditions can be well fitted by a power law with an exponent sensitive to both the drug type and the dose used. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The elevated plus-maze is an animal model of anxiety used to study the effect of different drugs on the behavior of the animal It consists of a plus-shaped maze with two open and two closed arms elevated 50 cm from the floor The standard measures used to characterize exploratory behavior in the elevated plus-maze are the time spent and the number of entries in the open arms In this work we use Markov chains to characterize the exploratory behavior of the rat in the elevated plus-maze under three different conditions normal and under the effects of anxiogenic and anxiolytic drugs The spatial structure of the elevated plus-maze is divided into squares which are associated with states of a Markov chain By counting the frequencies of transitions between states during 5-min sessions in the elevated plus-maze we constructed stochastic matrices for the three conditions studied The stochastic matrices show specific patterns which correspond to the observed behaviors of the rat under the three different conditions For the control group the stochastic matrix shows a clear preference for places in the closed arms This preference is enhanced for the anxiogenic group For the anxiolytic group the stochastic matrix shows a pattern similar to a random walk Our results suggest that Markov chains can be used together with the standard measures to characterize the rat behavior in the elevated plus-maze (C) 2010 Elsevier B V All rights reserved
Resumo:
The cellular mechanisms coupling mechanical loading with bone remodeling remain unclear. In the CNS, the excitatory amino acid glutamate (Glu) serves as a potent neurotransmitter exerting its effects via various membrane Glu receptors (GluR). Nerves containing Glu exist close to bone cells expressing functional GluRs. Demonstration of a mechanically sensitive glutamate/aspartate transporter protein and the ability of glutamate to stimulate bone resorption in vitro suggest a role for glutamate linking mechanical load and bone remodeling. We used immunohistochemical techniques to identify the expression of N-methyl-D-aspartate acid (NMDA) and non-NMDA (AMPA or kainate) ionotropic GluR subunits on bone cells in vivo. In bone sections from young adult rats, osteoclasts expressed numerous GluR subunits including AMPA (GluR2/3 and GluR4), kainic acid (GluR567) and NMDA (NMDAR2A, NMDAR2B and NMDAR2C) receptor subtypes. Bone lining cells demonstrated immunoexpression for NMDAR2A, NMDAR2B, NMDAR2C, GluR567, GluR23, GuR2 and GluR4 subunits. Immunoexpression was not evident on osteocytes, chondrocytes or vascular channels. To investigate the effects of mechanical loading on GluR expression, we used a Materials Testing System (MTS) to apply 10 N sinusoidal axial compressive loads percutaneously to the right limbs (radius/ulna, tibia/fibula) of rats. Each limb underwent 300-load cycles/day (cycle rate, 1 Hz) for 4 consecutive days. Contralateral, non-loaded limbs served as controls. Mechanically loaded limbs revealed a load-induced loss of immunoexpression for GluR2/3, GluR4, GluR567 and NMDAR2A on osteoclasts and NMDAR2A, NMDAR2B, GluR2/3 and GluR4 on bone lining cells. Both neonatal rabbit and rat osteoclasts were cultured on bone slices to investigate the effect of the NMDA receptor antagonist, MK801, and the AMPA/kainic acid receptor antagonist, NBQX, on osteoclast resorptive activity in vitro. The inhibition of resorptive function seen suggested that both NMDAR and kainic acid receptor function are required for normal osteoclast function. While the exact role of ionotropic GluRs in skeletal tissue remains unclear, the modulation of GluR subunit expression by mechanical loading lends further support for participation of Glu as a mechanical loading effector. These ionotropic receptors appear to be functionally relevant to normal osteoclast resorptive activity. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
Asthma is characterized by pulmonary cellular infiltration, vascular exudation and airway hyperresponsiveness. Several drugs that modify central nervous system (CNS) activity can modulate the course of asthma. Amphetamine (AMPH) is a highly abused drug that presents potent stimulating effects on the CNS and has been shown to induce behavioral, biochemical and immunological effects. The purpose of this study was to investigate the effects of AMPH on pulmonary cellular influx, vascular permeability and airway reactivity. AMPH effects on adhesion molecule expression, IL-10 and IL-4 release and mast cell degranulation were also studied. Male Wistar rats were sensitized with ovalbumin (OVA) plus alum via subcutaneous injection. One week later, the rats received another injection of OVA-alum (booster). Two weeks after this booster, the rats were subjected to AMPH treatment 12 h prior to the OVA airway challenge. In rats treated with AMPH, the OVA challenge reduced cell recruitment into the lung, the vascular permeability and the cellular expression of ICAM-1 and Mac-1. Additionally, elevated levels of IL-10 and IL-4 were found in samples of lung explants from allergic rats. AMPH treatment, in comparison, increased IL-10 levels but reduced those of IL-4 in the lung explants. Moreover, the tracheal responsiveness to methacholine (MCh), as well as to an in vitro OVA challenge, was reduced by AMPH treatment, and levels of PCA titers were not modified by the drug. Our findings suggest that single AMPH treatment down-regulates several parameters of lung inflammation, such as cellular migration, vascular permeability and tracheal responsiveness. These results also indicate that AMPH actions on allergic lung inflammation include endothelium-leukocyte interaction mechanisms, cytokine release and mast cell degranulation. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background. The main purpose of the present investigation was to describe a model of intestinal denervation and in situ intestinal ischemia-reperfusion injury in adult rats, with utilization of the distal branch of the superior mesenteric artery close to the cecum for perfusion. Methods. In the root of the mesentery, the mesenteric artery and vein were completely isolated. Close to the cecal valve, a lymphatic node served as the reference point for the localization of the cecal artery, which was cannulated for perfusion with cold lactated Ringer`s solution. One hundred adult male rats were utilized in the study. Results. In a pilot study, we demonstrated that the cold ischemia time was sufficient to promote histopathologic intestinal changes characteristic of ischemia-reperfusion injury. Among 88 operated animals, 62 (70.5%) survived the procedure. Conclusion. The experimental model described herein has the advantage of preserving the entire intestine, which makes it more suitable for studies of physiological and morphological alterations after intestinal transplantation.
Resumo:
Background: Inflammatory events antecede established renal injury in rats with 5/6 renal ablation (Nx), as indicated by the beneficial effects of early, uninterrupted treatment with mycophenolate mofetil (MMF). Angiotensin II also exerts a major pathogenic role at this initial phase. We investigated whether losartan (L) or L+MMF treatment, started early, and L+MMF treatment, started late, would exert lasting renoprotection in Nx even after being discontinued. Methods: Adult male Munich-Wistar rats underwent Nx and were divided into three groups: Nx (untreated), Nx(L) (given L), and Nx(LMMF) (given L and MMF). Protocol 1: treatments began on day 1, and ceased on day 30, after Nx. Protocol 2: L+MMF treatment began on day 30 and ceased on day 60. Results: Protocol 1: on day 30, hypertension, albuminuria and renal injury were strongly attenuated in Groups Nx(L) and Nx(LMMF). On day 120, these abnormalities were still attenuated in group Nx(LMMF). Protocol 2: on day 120, all parameters were similar between this late Nx(LMMF) group and untreated Nx. Conclusion: In Nx, temporary suppression of early, transitory hemodynamic/inflammatory phenomena affords relatively durable renoprotection even after treatment discontinuation. This effect is not obtained with similar temporary treatment initiated later in the course of renal disease. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Motor cortex stimulation oriented by functional cortical mapping is used mainly for treating otherwise intractable neurological disorders, however. its mechanism of action remains elusive. Herein, we present a new method for functional mapping of the rat motor cortex using non-invasive transdural electrical stimulation. This method allows a non-invasive mapping of the surface of the neocortex providing a differentiation of representative motor areas. This Study may facilitate further investigation about the mechanisms mediating the effects of electrical stimulation, possibly benefiting patients who do not respond to this neuromodulation therapy. (c) 2009 Elsevier B.V. All rights reserved.