930 resultados para ACTIVE-SITE MOVEMENT
Resumo:
Group II introns are widely believed to have been ancestors of spliceosomal introns, yet little is known about their own evolutionary history. In order to address the evolution of mobile group II introns, we have compiled 71 open reading frames (ORFs) related to group II intron reverse transcriptases and subjected their derived amino acid sequences to phylogenetic analysis. The phylogenetic tree was rooted with reverse transcriptases (RTs) of non-long terminal repeat retroelements, and the inferred phylogeny reveals two major clusters which we term the mitochondrial and chloroplast-like lineages. Bacterial ORFs are mainly positioned at the bases of the two lineages but with weak bootstrap support. The data give an overview of an apparently high degree of horizontal transfer of group II intron ORFs, mostly among related organisms but also between organelles and bacteria. The Zn domain (nuclease) and YADD motif (RT active site) were lost multiple times during evolution. Differences in domain structures suggest that the oldest ORFs were concise, while the ORF in the mitochondrial lineage subsequently expanded in three locations. The data are consistent with a bacterial origin for mobile group II introns.
Resumo:
Binding of different regulatory subunits and methylation of the catalytic (C) subunit carboxy-terminal leucine 309 are two important mechanisms by which protein phosphatase 2A (PP2A) can be regulated. In this study, both genetic and biochemical approaches were used to investigate regulation of regulatory subunit binding by C subunit methylation. Monoclonal antibodies selectively recognizing unmethylated C subunit were used to quantitate the methylation status of wild-type and mutant C subunits. Analysis of 13 C subunit mutants showed that both carboxy-terminal and active site residues are important for maintaining methylation in vivo. Severe impairment of methylation invariably led to a dramatic decrease in Bα subunit binding but not of striatin, SG2NA, or polyomavirus middle tumor antigen (MT) binding. In fact, most unmethylated C subunit mutants showed enhanced binding to striatin and SG2NA. Certain carboxy-terminal mutations decreased Bα subunit binding without greatly affecting methylation, indicating that Bα subunit binding is not required for a high steady-state level of C subunit methylation. Demethylation of PP2A in cell lysates with recombinant PP2A methylesterase greatly decreased the amount of C subunit that could be coimmunoprecipitated via the Bα subunit but not the amount that could be coimmunoprecipitated with Aα subunit or MT. When C subunit methylation levels were greatly reduced in vivo, Bα subunits were found complexed exclusively to methylated C subunits, whereas striatin and SG2NA in the same cells bound both methylated and unmethylated C subunits. Thus, C subunit methylation is critical for assembly of PP2A heterotrimers containing Bα subunit but not for formation of heterotrimers containing MT, striatin, or SG2NA. These findings suggest that methylation may be able to selectively regulate the association of certain regulatory subunits with the A/C heterodimer.
Resumo:
The proteasome is a large protease complex consisting of multiple catalytic subunits that function simultaneously to digest protein substrates. This complexity has made deciphering the role each subunit plays in the generation of specific protein fragments difficult. Positional scanning libraries of peptide vinyl sulfones were generated in which the amino acid located directly at the site of hydrolysis (P1 residue) was held constant and sequences distal to that residue (P2, P3, and P4 positions) were varied across all natural amino acids (except cysteine and methionine). Binding information for each of the individual catalytic subunits was obtained for each library under a variety of different conditions. The resulting specificity profiles indicated that substrate positions distal to P1 are critical for directing substrates to active subunits in the complex. Furthermore, specificity profiles of IFN-γ-regulated subunits closely matched those of their noninducible counterparts, suggesting that subunit swapping may modulate substrate processing by a mechanism that does require a change in the primary sequence specificity of individual catalytic subunits in the complex. Finally, specificity profiles were used to design specific inhibitors of a single active site in the complex. These reagents can be used to further establish the role of each subunit in substrate processing by the proteasome.
Resumo:
Cytochrome P450 14α-sterol demethylases (CYP51) are essential enzymes in sterol biosynthesis in eukaryotes. CYP51 removes the 14α-methyl group from sterol precursors such as lanosterol, obtusifoliol, dihydrolanosterol, and 24(28)-methylene-24,25-dihydrolanosterol. Inhibitors of CYP51 include triazole antifungal agents fluconazole and itraconazole, drugs used in treatment of topical and systemic mycoses. The 2.1- and 2.2-Å crystal structures reported here for 4-phenylimidazole- and fluconazole-bound CYP51 from Mycobacterium tuberculosis (MTCYP51) are the first structures of an authentic P450 drug target. MTCYP51 exhibits the P450 fold with the exception of two striking differences—a bent I helix and an open conformation of BC loop—that define an active site-access channel running along the heme plane perpendicular to the direction observed for the substrate entry in P450BM3. Although a channel analogous to that in P450BM3 is evident also in MTCYP51, it is not open at the surface. The presence of two different channels, with one being open to the surface, suggests the possibility of conformationally regulated substrate-in/product-out openings in CYP51. Mapping mutations identified in Candida albicans azole-resistant isolates indicates that azole resistance in fungi develops in protein regions involved in orchestrating passage of CYP51 through different conformational stages along the catalytic cycle rather than in residues directly contacting fluconazole. These new structures provide a basis for rational design of new, more efficacious antifungal agents as well as insight into the molecular mechanism of P450 catalysis.
Resumo:
The wealth of kinetic and structural information makes inorganic pyrophosphatases (PPases) a good model system to study the details of enzymatic phosphoryl transfer. The enzyme accelerates metal-complexed phosphoryl transfer 1010-fold: but how? Our structures of the yeast PPase product complex at 1.15 Å and fluoride-inhibited complex at 1.9 Å visualize the active site in three different states: substrate-bound, immediate product bound, and relaxed product bound. These span the steps around chemical catalysis and provide strong evidence that a water molecule (Onu) directly attacks PPi with a pKa vastly lowered by coordination to two metal ions and D117. They also suggest that a low-barrier hydrogen bond (LBHB) forms between D117 and Onu, in part because of steric crowding by W100 and N116. Direct visualization of the double bonds on the phosphates appears possible. The flexible side chains at the top of the active site absorb the motion involved in the reaction, which may help accelerate catalysis. Relaxation of the product allows a new nucleophile to be generated and creates symmetry in the elementary catalytic steps on the enzyme. We are thus moving closer to understanding phosphoryl transfer in PPases at the quantum mechanical level. Ultra-high resolution structures can thus tease out overlapping complexes and so are as relevant to discussion of enzyme mechanism as structures produced by time-resolved crystallography.
Resumo:
The zinc metallopeptidase neurolysin is shown by x-ray crystallography to have large structural elements erected over the active site region that allow substrate access only through a deep narrow channel. This architecture accounts for specialization of this neuropeptidase to small bioactive peptide substrates without bulky secondary and tertiary structures. In addition, modeling studies indicate that the length of a substrate N-terminal to the site of hydrolysis is restricted to approximately 10 residues by the limited size of the active site cavity. Some structural elements of neurolysin, including a five-stranded β-sheet and the two active site helices, are conserved with other metallopeptidases. The connecting loop regions of these elements, however, are much extended in neurolysin, and they, together with other open coil elements, line the active site cavity. These potentially flexible elements may account for the ability of the enzyme to cleave a variety of sequences.
Resumo:
2-Keto-3-deoxy-6-phosphogluconate (KDPG) aldolase catalyzes the reversible cleavage of KDPG to pyruvate and glyceraldehyde-3-phosphate. The enzyme is a class I aldolase whose reaction mechanism involves formation of Schiff base intermediates between Lys-133 and a keto substrate. A covalent adduct was trapped by flash freezing KDPG aldolase crystals soaked with 10 mM pyruvate in acidic conditions at pH 4.6. Structure determination to 1.95-Å resolution showed that pyruvate had undergone nucleophilic attack with Lys-133, forming a protonated carbinolamine intermediate, a functional Schiff base precursor, which was stabilized by hydrogen bonding with active site residues. Carbinolamine interaction with Glu-45 indicates general base catalysis of several rate steps. Stereospecific addition is ensured by aromatic interaction of Phe-135 with the pyruvate methyl group. In the native structure, Lys-133 donates all of its hydrogen bonds, indicating the presence of an ɛ-ammonium salt group. Nucleophilic activation is postulated to occur by proton transfer in the monoprotonated zwitterionic pair (Glu-45/Lys-133). Formation of the zwitterionic pair requires prior side chain rearrangement by protonated Lys-133 to displace a water molecule, hydrogen bonded to the zwitterionic residues.
Resumo:
The objective of this study was to elucidate the mechanisms by which nitric oxide (NO) inhibits rat aortic smooth muscle cell (RASMC) proliferation. Two products of the arginine-NO pathway interfere with cell growth by distinct mechanisms. NG-hydroxyarginine and NO appear to interfere with cell proliferation by inhibiting arginase and ornithine decarboxylase (ODC), respectively. S-nitroso-N-acetylpenicillamine, (Z)-1-[N-(2-aminoethyl)-N-(2-aminoethyl)-amino]-diazen-1-ium-1,2-diolate, and a nitroaspirin derivative (NCX 4016), each of which is a NO donor agent, inhibited RASMC growth at concentrations of 1–3 μM by cGMP-independent mechanisms. The cytostatic action of the NO donor agents as well as α-difluoromethylornithine (DFMO), a known ODC inhibitor, was prevented by addition of putrescine but not ornithine. These observations suggested that NO, like DFMO, may directly inhibit ODC. Experiments with purified, recombinant mammalian ODC revealed that NO inhibits ODC possibly by S-nitrosylation of the active site cysteine in ODC. DFMO, as well as the NO donor agents, interfered with cellular polyamine (putrescine, spermidine, spermine) production. Conversely, increasing the expression and catalytic activity of arginase I in RASMC either by transfection of cells with the arginase I gene or by induction of arginase I mRNA with IL-4 resulted in increased urea and polyamine production as well as cell proliferation. Finally, coculture of rat aortic endothelial cells, which had been pretreated with lipopolysaccharide plus a cytokine mixture to induce NO synthase and promote NO production, caused NO-dependent inhibition of target RASMC proliferation. This study confirms the inhibitory role of the arginine-NO pathway in vascular smooth muscle proliferation and indicates that one mechanism of action of NO is cGMP-independent and attributed to its capacity to inhibit ODC.
Resumo:
A gene encoding a product with substantial similarity to ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) was identified in the preliminary genome sequence of the green sulfur bacterium Chlorobium tepidum. A highly similar gene was subsequently isolated and sequenced from Chlorobium limicola f.sp. thiosulfatophilum strain Tassajara. Analysis of these amino acid sequences indicated that they lacked several conserved RubisCO active site residues. The Chlorobium RubisCO-like proteins are most closely related to deduced sequences in Bacillus subtilis and Archaeoglobus fulgidus, which also lack some typical RubisCO active site residues. When the C. tepidum gene encoding the RubisCO-like protein was disrupted, the resulting mutant strain displayed a pleiotropic phenotype with defects in photopigment content, photoautotrophic growth and carbon fixation rates, and sulfur metabolism. Most important, the mutant strain showed substantially enhanced accumulation of two oxidative stress proteins. These results indicated that the C. tepidum RubisCO-like protein might be involved in oxidative stress responses and/or sulfur metabolism. This protein might be an evolutional link to bona fide RubisCO and could serve as an important tool to analyze how the RubisCO active site developed.
Resumo:
Glutamine synthetase (GS) is the key enzyme in ammonia assimilation and catalyzes the ATP-dependent condensation of NH3 with glutamate to produce glutamine. GS in plants is an octameric enzyme. Recent work from our laboratory suggests that GS activity in plants may be regulated at the level of protein turnover (S.J. Temple, T.J. Knight, P.J. Unkefer, C. Sengupta-Gopalan [1993] Mol Gen Genet 236: 315–325; S.J. Temple, S. Kunjibettu, D. Roche, C. Sengupta-Gopalan [1996] Plant Physiol 112: 1723–1733; S.J. Temple, C. Sengupta-Gopalan [1997] In C.H. Foyer, W.P. Quick, eds, A Molecular Approach to Primary Metabolism in Higher Plants. Taylor & Francis, London, pp 155–177). Oxidative modification of GS has been implicated as the first step in the turnover of GS in bacteria. By incubating soybean (Glycine max) root extract enriched in GS in a metal-catalyzed oxidation system to produce the ·OH radical, we have shown that GS is oxidized and that oxidized GS is inactive and more susceptible to degradation than nonoxidized GS. Histidine and cysteine protect GS from metal-catalyzed inactivation, indicating that oxidation modifies the GS active site and that cysteine and histidine residues are the site of modification. Similarly, ATP and particularly ATP/glutamate give the enzyme the greatest protection against oxidative inactivation. The roots of plants fed ammonium nitrate showed a 3-fold increase in the level of GS polypeptides and activity compared with plants not fed ammonium nitrate but without a corresponding increase in the GS transcript level. This would suggest either translational or posttranslational control of GS levels.
Resumo:
The 2.15-Å structure of Hjc, a Holliday junction-resolving enzyme from the archaeon Sulfolobus solfataricus, reveals extensive structural homology with a superfamily of nucleases that includes type II restriction enzymes. Hjc is a dimer with a large DNA-binding surface consisting of numerous basic residues surrounding the metal-binding residues of the active sites. Residues critical for catalysis, identified on the basis of sequence comparisons and site-directed mutagenesis studies, are clustered to produce two active sites in the dimer, about 29 Å apart, consistent with the requirement for the introduction of paired nicks in opposing strands of the four-way DNA junction substrate. Hjc displays similarity to the restriction endonucleases in the way its specific DNA-cutting pattern is determined but uses a different arrangement of nuclease subunits. Further structural similarity to a broad group of metal/phosphate-binding proteins, including conservation of active-site location, is observed. A high degree of conservation of surface electrostatic character is observed between Hjc and T4-phage endonuclease VII despite a complete lack of structural homology. A model of the Hjc–Holliday junction complex is proposed, based on the available functional and structural data.
Resumo:
Vsx-1 is a paired-like:CVC homeobox gene whose expression is linked to bipolar cell differentiation during zebrafish retinogenesis. We used a yeast two-hybrid screen to identify proteins interacting with Vsx-1 and isolated Ubc9, an enzyme that conjugates the small ubiquitin-like modifier SUMO-1. Despite its interaction with Ubc9, we show that Vsx-1 is not a substrate for SUMO-1 in COS-7 cells or in vitro. When a yeast two-hybrid assay is used, deletion analysis of the interacting domain on Vsx-1 shows that Ubc9 binds to a nuclear localization signal (NLS) at the NH2 terminus of the homeodomain. In SW13 cells, Vsx-1 localizes to the nucleus and is excluded from nucleoli. Deletion of the NLS disrupts this nuclear localization, resulting in a diffuse cytoplasmic distribution of Vsx-1. In SW13 AK1 cells that express low levels of endogenous Ubc9, Vsx-1 accumulates in a perinuclear ring and colocalizes with an endoplasmic reticulum marker. However, NLS-tagged STAT1 protein exhibits normal nuclear localization in both SW13 and SW13 AK1 cells, suggesting that nuclear import is not globally disrupted. Cotransfection of Vsx-1 with Ubc9 restores Vsx-1 nuclear localization in SW3 AK1 cells and demonstrates that Ubc9 is required for the nuclear localization of Vsx-1. Ubc9 continues to restore nuclear localization even after a C93S active site mutation has eliminated its SUMO-1-conjugating ability. These results suggest that Ubc9 mediates the nuclear localization of Vsx-1, and possibly other proteins, through a nonenzymatic mechanism that is independent of SUMO-1 conjugation.
Resumo:
The Ras family of GTPases is a collection of molecular switches that link receptors on the plasma membrane to signaling pathways that regulate cell proliferation and differentiation. The accessory GTPase-activating proteins (GAPs) negatively regulate the cell signaling by increasing the slow intrinsic GTP to GDP hydrolysis rate of Ras. Mutants of Ras are found in 25–30% of human tumors. The most dramatic property of these mutants is their insensitivity to the negative regulatory action of GAPs. All known oncogenic mutants of Ras map to a small subset of amino acids. Gln-61 is particularly important because virtually all mutations of this residue eliminate sensitivity to GAPs. Despite its obvious importance for carcinogenesis, the role of Gln-61 in the GAP-stimulated GTPase activity of Ras has remained a mystery. Our molecular dynamics simulations of the p21ras–p120GAP–GTP complex suggest that the local structure around the catalytic region can be different from that revealed by the x-ray crystal structure. We find that the carbonyl oxygen on the backbone of the arginine finger supplied in trans by p120GAP (Arg-789) interacts with a water molecule in the active site that is forming a bridge between the NH2 group of the Gln-61 and the γ-phosphate of GTP. Thus, Arg-789 may play a dual role in generating the nucleophile as well as stabilizing the transition state for P—O bond cleavage.
Resumo:
Surface proteins of Gram-positive bacteria play important roles during the pathogenesis of human infections and require sortase for anchoring to the cell-wall envelope. Sortase cleaves surface proteins at the LPXTG motif and catalyzes the formation of an amide bond between the carboxyl group of threonine (T) and the amino group of cell-wall crossbridges. The NMR structure of sortase reveals a unique β-barrel structure, in which the active-site sulfhydryl of cysteine-184 is poised for ionization by histidine-120, presumably enabling the resultant thiolate to attack the LPXTG peptide. Calcium binding near the active site stimulates catalysis, possibly by altering the conformation of a surface loop that recognizes newly translocated polypeptides. The structure suggests a mechanistic relationship to the papain/cathepsin proteases and should facilitate the design of new antiinfective agents.
Resumo:
CheY, a response regulator protein in bacterial chemotaxis, serves as a prototype for the analysis of response regulator function in two-component signal transduction. Phosphorylation of a conserved aspartate at the active site mediates a conformational change at a distal signaling surface that modulates interactions with the flagellar motor component FliM, the sensor kinase CheA, and the phosphatase CheZ. The objective of this study was to probe the conformational coupling between the phosphorylation site and the signaling surface of CheY in the reverse direction by quantifying phosphorylation activity in the presence and absence of peptides of CheA, CheZ, and FliM that specifically interact with CheY. Binding of these peptides dramatically impacted autophosphorylation of CheY by small molecule phosphodonors, which is indicative of reverse signal propagation in CheY. Autodephosphorylation and substrate affinity, however, were not significantly affected. Kinetic characterization of several CheY mutants suggested that conserved residues Thr-87, Tyr-106, and Lys-109, implicated in the activation mechanism, are not essential for conformational coupling. These findings provide structural and conceptual insights into the mechanism of CheY activation. Our results are consistent with a multistate thermodynamic model of response regulator activation.