983 resultados para 7140-237
Resumo:
本论文由三章组成。第一章阐述了藏药水菖蒲的化学成分研究,共分离鉴定了39个化学成分,其中6个为新化合物。第二章报道了几种忍冬属植物的HPLC、HPLC-MS、GC分析以及抑菌活性、重金属含量测定结果。第三章概述了菖蒲属植物的研究进展。 第一章报道了水菖蒲(Acorus calamus L.)化学成分的分离纯化与结构鉴定。采用正、反相硅胶柱层析等分离方法,从水菖蒲的根中共分离出41个化合物,通过红外、质谱、核磁共振及X-ray单晶衍射等波谱方法和模拟计算方法鉴定了其中39个化合物的结构,主要为倍半萜、苯丙素、甾体类化合物。其中含有5个新的倍半萜类化合物和1系列新的甾体皂苷衍生物。经波谱分析将它们的结构鉴定为 1b, 7a(H)-cadinane-4a, 6a, 10a-triol (1), (2R,6R,7S,9S)-1(10), 4-cadinadiene-2, 9-diol (2), 1a, 5b-guaiane-10a-O-ethyl-4b, 6b-diol (7), 6b, 7b(H)-cadinane-1a, 4a, 10a-triol (13),(1R,4R,6S,10R)-1-hydroxy-7(11)-cadinen-5, 8-dione (14), 4′-O-正n碳酰基-3-O- β-D-葡萄糖基谷甾醇(n=14, 16, 18, 22) (15)。 第二章包括四个部分。第一部分报道了忍冬属三种植物40个样品的HPLC测定和对主要活性成分绿原酸的定量分析结果,以及运用HPLC-MS技术对色谱图中8个峰进行指认。在此基础上,考察了种植和采收多个因素对绿原酸含量的影响。第二部分报道了忍冬属三种植物27个样品的GC分析,根据样品的挥发性成分的保留时间对不同样品进行了定性比较,并考察了花期及海拔高度对植物挥发性成分的影响。第三、四部分分别阐述了灰毡毛忍冬和红腺忍冬的体外抑菌活性研究和重金属含量测定结果。 第三章全面系统地概述了菖蒲属植物的化学成分和药理活性研究进展。 This dissertation is composed by three chapters. The first chapter elaborates the phytochemical investigation of Acorus calamus L. Thirty-nine compounds including six new compounds were isolated and identified. The second chapter reports the research on genus Lonicera by HPLC, HPLC-MS and GC. Antifungal activity and heavy metals measurement of genus Lonicera were reported. The third chapter is a review about the research progress on the plant family of Acorus. The first chapter focuses on the isolation and identification of chemical constituents from Acorus calamus L.. Forty-one compounds were isolated from the root of Acorus calamus L. by repeat column chromatography over normal and reversed phase silica gel, the structure of thirty-nine compounds was identified by spectroscopic methods and computational methods, including IR, MS, NMR and X-ray. Those compounds mainly belonged to sesquiterpene, phenylpropanoid and steroid. Among them, five are new sesquiterpenes and one series are new steroid glycoside derivatives. Their structure were suggested as 1b, 7a(H)-cadinane-4a, 6a, 10a-triol (1), (2R,6R,7S,9S)-1(10), 4-cadinadiene-2, 9-diol (2), 1a, 5b-guaiane-10a-O-ethyl-4b, 6b- diol (7), 6b, 7b(H)-cadinane-1a, 4a, 10a-triol (13), (1R,4R,6S,10R)-1-hydroxy-7(11)- cadinen-5, 8-dione (14), 4′-O-carbonyl-3-O-β-D-glucosyl-sitosterol (carbonyl = tetradecanoyl, hexadecanoyl, octadecyl, docosanoyl) (15). The second chapter consists of four parts. The first part reports the HPLC analysis of forty samples of the genus Lonicera, and the quantitative investigation of chlorogenic acid in these samples by HPLC analysis. Relationship between the content of chlorogenic acid in different samples and their planting conditions and harvesting time were discussed. Furthermore, eight compounds were identified or tentatively characterized based on their mass spectra and UV spectra profiles. The second part is about qualitative analysis of the volatile constituent in twenty-seven samples of genus Lonicera by GC. The effect of planting altitude and harvesting time on the volatile constituent was also investigated. The third and fourth parts describe the antifungal activity and content of some kinds of heavy metals of L. macranthoides Hand.-Mazz. and L. hypoglauca Miq.. The third chaspter is a review about the research progress of the plant family of Acorus.
Resumo:
本学位论文报道了作为传统藏药材广泛使用的西藏产雪莲花化学成分的研究。论文由五章组成,第一章是三种西藏产雪莲花的化学成分的系统分离纯化和结构鉴定;第二章为西藏产雪莲花化学成分的液-质及串联质谱联用分析;第三章提出了以HPLC和TLC为检测方法的雪莲花药材质量标准草案;第四章给出了对西藏产雪莲花挥发油化学成分的气-质联用分析结果;第五章概述了雪莲花的化学成分及药理研究进展。 第一章包括三个部分。第一部分报道了绵头雪莲花(Saussurea laniceps Hand.-Mazz.)全草乙醇提取物化学成分的分离鉴定。采用正相硅胶柱层析及凝胶柱层析等分离方法,从西藏产绵头雪莲花的乙醇提取物中共分离鉴定出15个化合物。其中11个化合物为首次从该植物中分离得到,当中2个化合物系在凤毛菊属植物中首次发现。第二部分报道了水母雪莲花(Saussurea medusa Maxim.)全草乙醇提取物的化学成分。采用正、反相硅胶柱层析及凝胶柱层析等分离方法,共分离鉴定出15个化合物,其中1个为新化合物,另有4个化合物为首次从该植物中分离得到。新化合物结构通过质谱和一维及二维核磁共振等波谱解析方法及碱水解反应确定为巴豆酰基-高车前苷(M-7)。第三部分报道了三指雪莲花 (Saussurea tridactyla Sch.-Bip. ex Hook. f.)全草乙醇提取物的化学成分。采用正相硅胶柱层析及凝胶柱层析等分离方法,共分离鉴定出7个化合物,其中1个化合物为首次从该植物中分离得到。 第二章也包括三个部分。首先是采用液-质联用(HPLC-DAD-ESI-MSn)分析方法,对7个西藏不同产地的三指雪莲花化学成分进行了分析,通过与标准品的 UV和MS数据比较,共鉴定出14个峰,并对其中8个共有成分进行了定量测定。其次是关于八种西藏产雪莲花化学成分的液-质联用(HPLC-DAD-ESI-MSn)分析,通过与标准品的UV和MS数据比较,共鉴定出15个峰,并对其中8个共有成分进行了定量检测。最后通过对八种西藏产雪莲花主要化学成分的多级串联质谱(ESI-MSn)分析,快速、灵敏地鉴定出10个黄酮和3个香豆素化学成分。 第三章同样包括三个部分。首先是以绵头雪莲花中主要香豆素成分东莨菪素和伞形花内酯为对照品,通过TLC定性检测和HPLC含量测定,草拟出较严谨的药材质量标准。其次是将绵头雪莲花、三指雪莲花和雪兔子作为一个药材看待,草拟了以东莨菪素和伞形花内酯的TLC检测为指标的药材质量标准。最后是针对水母雪莲花,以主要黄酮成分芹菜素-7-O-b-D-葡萄糖苷为对照品作TLC检测,并草拟出该药材的质量标准草案。 第四章报道了西藏产雪莲花挥发油的化学成分分析。采用传统水蒸气蒸馏法分别从八种雪莲花全草中提取挥发油,利用气相色谱-质谱联用技术分别从水母雪莲花、绵头雪莲花、槲叶雪莲花、云状雪兔子、拉萨雪兔子、小果雪兔子、雪兔子和三指雪莲花中分别鉴定出83、83、56、34、21、20、24和20个化学成分,分别占其挥发油总量的70.7%、76.0%、82.2%、55.4%、49.7%、70.4 %、76.2%和 76.7%。 第五章为综述,总结和概括了雪莲花的化学和药理研究进展。 The dissertation reports the investigation of the chemical constituents of the genus Saussurea. Quite a lot of species in this genus are traditional Tibetan medicinal plants, and hence have been widely used in traditional Tibetan medicine. This dissertation consisted of five chapters. The first chapter is on the chemical constituents of three Saussurea plants. The second section is about the analysis of chemical constituents of Saussurea plants using HPLC-MS and ESI-MS/MS. In the third chapter, we proposed quality-control standards for the Genus Saussurea based on TLC (thin layer chromatography) and HPLC. The fourth chapter is about chemical compositions of the essential oil from the whole plant of Saussurea plants. The last chapter reviews the research progress of the Genus Saussurea. The first chapter consists of three parts. The first part is about chemical constituents of ethanol extracts from whole plant of Saussurea laniceps Hand.-Mazz. Fifteen compounds were isolated by column chromatography on normal phase silica gel and Sephadex LH-20. Among them, eleven compounds were isolated from this plant for the first time, and two compounds were isolated from Genus Saussurea for the first time. The second part is about chemical constituents of ethanol extracts from whole plant of Saussurea medusa Maxim. Fifteen compounds were isolated by column chromatography on normal phase, reversed phase silica gel and Sephadex LH-20. Five of them were isolated from this plant for the first time, and there is one new flavonoid glucoside which was identified as 6″-O-crotonoyl-homoplantaginin (M-7) based on the evidence of one- and two-dimensional nuclear magnetic resonance, mass spectrometry analysis, and alkaline hydrolysis reaction. The last part is about chemical constituents of ethanol extracts from whole plant of Saussurea tridactyla Sch.-Bip. ex Hook. f.. Seven compounds were isolated by column chromatography on normal phase silica gel and Sephadex LH-20. There is one compound which was isolated from this plant for the first time. The second chapter consists of three parts. In the first part, we analyzed the chemical constituents of S. tridactyla collected from seven different places in Tibet using HPLC-DAD-ESI-MSn. Fourteen peaks in the HPLC were identified by comparison of UV and MS spectra with those of authentic compounds, among which eight common peaks were quantified. In the second part, we analyzed the chemical constituents of eight Saussurea species using HPLC-DAD-ESI-MSn method. Fifteen peaks in the HPLC were identified by comparison of UV and MS spectra with those of authentic compounds and eight main peaks of them were quantified. In the last part, we analyzed the chemical compounds of the above eight Saussurea plants directly by ESI-MS/MS. Thirteen major compounds, including 10 flavonoids and 3 coumarins were easily rapidly identified. The third chapter consists of three parts. In the first part, we proposed a comparative high quality-control standard for S. laniceps, based on quality detection by TLC and quantity analysis by HPLC using two major compounds (umbelliferone and scopoletin) as standard compounds. In the second part, in viewing S. laniceps, S. tridactyla and S. gossypiphora as the members of one family of medicinal herbs, we suggested a quality-control standard based on the TLC detection of the two major compounds (umbelliferone and scopoletin). In the last part, we proposed a quality-control standard for S. medusa based on the TLC detection of its major component (apigenin 7-O-glucoside). The four chapter analyzed the chemical constituents of essential oil of eight Saussurea species. The essential oils were extracted from the whole plants of these samples with water stream distillation. By GC-MS analysis, we identified eighty-three compounds from S. medusa, eighty-three from S. laniceps, fifty-six from S. quercifolia, thirty-four from S. aster, twenty-one from S. kingii, twenty from S. simpsoniana, twenty-four from S. gossypiphora, and twenty from S. tridactyla respetively, which accounted for 70.7%, 76.0%, 82.2%, 55.4%, 49.7%, 70.4 %, 76.2% and 76.7% of the total essential oil, respectively. The last chapter reviews the research progress of the Genus Saussurea.
Resumo:
本论文对四川蜡瓣花 (Corylopsis willmottiae Rehd. et Wils.)、密花樫木[Dysoxylum densiflorum (Blume) Miq.]、四川溲疏 (Deutzia setchuenensis Franch)及云南豆腐柴 (Premna yunnanensis W. W. Smith)的化学成分进行了研究。通过色谱分离得到44个化合物。主要基于波谱数据鉴定了它们的结构,其中1个为新化合物。 1.从四川蜡瓣花全株的95%乙醇提取物中共分离鉴定了13个化合物,它们是:1-O-(3-O-甲基没食子酸)-岩白菜素(1)、11-O-没食子酰基岩白菜素(2)、 11-O-紫丁香基岩白菜素(3) 、岩白菜素(4)、4-O-没食子酰基岩白菜素(5) 、4,11-O-二没食子酰基岩白菜素 (6)[14]、β-谷甾醇 (7)、acetyl aleuritolic acid (8)、(-)-表没食子儿茶素没食子酸酯(9)、对羟基苯甲酮 (10)、 11-香豆酸酰岩白菜素 (11)[19]、丁香酸 (12)和没食子酸 (13)。其中1为新化合物。 2.从密花樫木根的95%乙醇提取物中共分离纯化了13个化合物,它们是:β-白檀酮(14)、richenone (15)、β-谷甾醇 (7)、cabraleadiol (16)、β-香树脂醇 (17)、龙脑香醇酮 (18)、cabraleadiol monoacetate (19)、cabraleone (20)、3β-hydroxy-5 -pregnen-20-one (21)、3β-hydroxy-5α-pregnan-20-one (22)、cabraleahydroxylactone (23)、川楝子甾醇B (24)、表儿茶素 (25)。 3.从四川溲疏全株95%乙醇提取物中共分离11个化合物,鉴定了其中的9个化合物。它们是:β-谷甾醇 (7)、白桦酯醇(26)、齐墩果酸(27)、hydrangetin (28)、肉桂酸 (29),齐墩果酸-3-O-β-D-吡喃葡萄糖醛酸苷(30)、β-胡萝卜苷 (31)、齐墩果酸-3-O-(β-D-吡喃葡萄糖醛酸-6-正丁酯)(32)、齐墩果酸-3-O-β-D-吡喃葡萄糖醛酸-28-O-β-D-吡喃葡萄糖苷 (33)。 4.从云南豆腐柴95%乙醇提取物中分离得到12个化合物,分别为白桦脂醇 (25)、7-羟基黄烷酮 (34)、松属素 (35)、2’,4’-羟基查儿酮 (36)、高良姜素-3-甲醚 (37) 、高良姜素-3,7-二甲醚 (38)、异甘草素-4-甲醚 (39)、豆蔻明 (40)、乔松酮 (41)、异甘草素 (42)、arjunolic acid (43)、槲皮素3-O-β-D-木糖苷(44)。 5.综述了1976年以来樫木属植物化学成分和活性研究的概况。 Phytochemical investigation on Corylopsis willmottiae, Dysoxylum densiflorum, Deutzia setchuenensis, and Premna yunnanensis, led to the isolation of 44 compounds, 1 of which was new one. 1. One new compound was isolated from 95% ehanolic extrat of the whole plants of C. willmottiae, identified as 11-O-(3-O-methylgalloyl)-bergenin (1). The twelve known compounds isolated were 11-O-galloylbergenin (2), 11-O-syringylbergenin (3), bergenin (4), 4-O-galloylbergenin (5), 4,11-di-O-galloylbergenin (6), β-sitosterol (7), acetyl aleuritolic acid (8), (-)-epigallocatechin 3-O-gallate (9), 1-(4-hydroxyphenyl) ethanone (10), 11-O-coumaroylbergenin (11), syringic acid (12), gallic acid (13). 2. Thirteen compounds were isolated from 95% ethanol extract from the roots of D. densiflorum and identified as β-amyrenone (14), richenone (15), β-sitosterol (7), cabraleadiol (16), β-amyrin (17), hydroxydammarenone-Ⅱ (18), cabraleadiol monoacetate (19), cabraleone (20), 3β-hydroxy-5-pregnen-20-one (21), 3β-hydroxy-5α-pregnan-20-one (22), cabraleahydroxylactone (23), toosendansterol B (24) and (-)-epicatechin (25). 3. Eleven compounds were isolated from ethanol extract of D. Setchuenensis. Nine were identified as β-sitosterol (7), betulin (26), oleanolic acid (27), hydrangetin (28), cinnamic acid (29), oleanolic acid 3-O-β-D-glucuronopyranoside (30), β-daucosterol (31), oleanolic acid 3-O-β-D-glucuronopyranoside-6-O-butyl ester)(32), oleanolic acid 3-O-β-D-glucuronopyranosyl-28-3-O-β-D-glucopyranoside (33). 4. Twelve compounds were isolated from ethanol extract of P. yunnanensis and identified as betulin (26), 7-hydroxyflavanone (34), pinocembrin (35), 2’,4’-dihydroxychalcone (36), galangin 3-methyl ether (37), galangin 3,7-dimethyl ether (38), isoliquiritigenin 4-methyl ether (39), cardamonin (40), pinostrobin (41), isoliquiritigenin (42), arjunolic acid (43), quercetin 3-O-β-D-lyxosopyranoside (44). 5. Chemical constituents and biological activities of the genus Dysoxylum (Meliaceae) were reviewed during 1976-2009.
Resumo:
何首乌为常用中药,由何首乌及含何首乌的中成药制剂所引起的不良反应也时见报道,科学阐明不良反应的物质基础并提出解决方案对何首乌的使用十分重要。本论文研究了何首乌炮制前后KM小鼠肝脏毒性基因表达谱、生物活性及化学成分的变化。所获结果支持何首乌炮制的目的是减毒、改性(改变药效),何首乌生、熟异治的观点。制首乌对抑郁症的效果显著优于生首乌,这与本草所记载的何首乌炮制后补肝肾、益精血,归肝、肾经一致。 主要结果如下: 1、 生、制首乌的毒理基因芯片研究结果 何首乌的不良反应主要表现在肝损害方面。本研究建立了生何首乌和制何首乌不同剂量的肝毒性作用模型,体重指标统计发现生何首乌各剂量组平均体重显著下降,中剂量组(10 g/kg.d)体重下降20 %,高剂量组(20 g/kg.d)体重下降42%,50%动物死亡,提示动物机体能量代谢障碍;基因芯片研究结果表明何首乌是CYP450的抑制剂,生何首乌相对于制何首乌CYP3A4、CYP4A5显著下调,导致毒性成分在体内的吸收增加,服用大剂量的生何首乌后产生明显的肝毒性;主要对以下六条Pathway产生影响:①PPAR signaling pathway,主要毒性靶基因有RXRB CYP7a1、Acadl、Apoa2、Cyp4a、 FABP2 、MAPKKK5等基因。②Calcium signaling pathway,主要毒性靶基因有CAMK2B、CACNA1F、S100A1、 F2R、Ryr1、Slc8a2、Camk4 ③Neuroactive ligand-receptor interaction,主要毒性靶基因有Chrm4、 Ntsr2 、 GABRR1、 GRIK3、F2R等基因。④Wnt signaling pathway,主要毒性靶基因有Daam2、Rac1 等基因。⑤Complement and coagulation cascades,主要毒性靶基因有F2R、Serpina1b、Cfi 、FGA等基因。⑥Oxidative hosphorylation,主要毒性靶基因有Atp5e、NDUFA1等基因。生何首乌毒性明显强于制首乌,且生何首乌水煎液的毒性大于生何乌首丙酮提取物的毒性,这一结果表明,何首乌主要的毒性成分很可能并不仅仅是传统所认为的以大黄素为代表的蒽醌类化合物,而是何首乌中大量存在的有效组分二苯乙烯苷与大黄素相互作用的结果,这一研究结果与前述的何首乌对肝药酶的影响是一致的。后续生、制首乌的化学成分差异研究表明,炮制后二苯乙烯苷含量明显降低:生首乌为5.512 %、清蒸制首乌为3.811 %、豆制首乌为3.538 %,大黄素的含量炮制后显著升高,生首乌为0.094 %、清蒸制首乌为0.119 %、豆制首乌为0.126 %。 2 生、制首乌药效差异研究结果 本文采用慢性中等强度不可预知应激刺激模型(chronic unpredictable mild stress, CUMS)和动物行为绝望实验法,研究生、制首乌抗抑郁活性的差异,制首乌(5 g/kg.d)与模型组相比有显著差异(P< 0.01),生首乌制首乌(5g/kg.d)与模型组相比无显著差异,这一结果表明制首乌抗抑郁活性显著优于生首乌。 本文比较了生、制首乌对四氧嘧啶糖尿病模型小鼠血糖的影响的差异,生首乌(5 g/kg.d)与模型组相比有显著差异(P< 0.01),制首乌(5 g/kg.d)与模型组相比无显著差异,这一结果表明生首乌降糖活性优于制首乌。这一结果与历代中医古书中生首乌治疗消渴症(糖尿病)的记载一致。 3生、制首乌化学成分差异的研究结果 本文选用HPLC-DAD指纹图谱技术结合药效成分含量测定来研究生、制首乌化学成分的差异。炮制后,何首乌中的主要化学成分并未消失,只是其含量发生了改变。炮制后二苯乙烯苷含量明显降低:生首乌为5.512 %、清蒸制首乌为3.811 %、豆制首乌为3.538 %,大黄素的含量炮制后显著升高,生首乌为0.094 %、清蒸制首乌为0.119 %、豆制首乌为0.126 %。 综上所述,炮制前后何首乌中二苯乙烯苷和大黄素含量比的变化可能是何首乌炮制减毒、改性的物质基础。 根据上述结果我们建立了生、制首乌的质量控制新模式。 In recent years, some adverse drug reactions (ADR) about some traditional Chinese medicine were reported at times. As a Chinese medicine most in use, the ADRs of Radix Polygoni multiflori (RPM) and the medicines containing the RPM were also mentioned. The resolution of the problems caused by the ADRs is very important for the use of the RPM as a medicine. The process (or preparation) is a significant feature for the clinical use of the Chinese medicine and an important technology for the safe use and good effect of the Chinese medicine. By processing, the toxicity of the Chinese medicine can be reduced, its properties can be changed and curative effect can be enhanced at the same time. The changes of the gene expression profiles for KM mice hepatotoxic effects, and the change of the biological activity and the chemical composition after being processed of the RPm were studied in the present dissertation. The RPm heatotoxicity mechanism and the toxicity target genes were explained on the gene level for the first time. With the antidepressant activity, and the hypoglycemic effect as the target, the differences on the pharmacodynamics between the processed RPm and unprocessed RPm, for the first time, were investigated. The results obtained show that the antidepressant activity of the processed RPM is far higher than the ones of unprocessed RPm. As we know, the results were reported for the first time. The quality control systems (QCS) for the processed and the unprocessed RPm were founded. The HPLC-DAD was used in the systems founded on the basis of the toxicology and the pharmacodynamics experiments. As we know, the OCSs were reported for the first time. The above-mentioned experimental results confirm that the unique process theory of the traditional Chinese medicine (TCM) used for the process of the Radix Polygoni multiflori (RPm) is correct, i.e after being processed the toxicity of the RPm decreases and its Pharmacodynamic effects change. It is known to author that there have been no similar reports in the literatures up to now. The main experimental results are summarized as follows: 1 The results on the mice toxicology gene chip for the unprocessed and processed RPm The KM mice hepatotoxic model caused by the RPm at the different dosages was established in the present study. The results obtained show that the mouse average body weight obviously decreased in the groups at the different dosages of the unprocessed RPm: the 10 g/kg.d .group decreased 20%; 20 g/kg.d. group decreased 42%, and 50% mice died at 20 g/kg.d. group. The main experimental results on the mice toxicology gene chip The RPm is the CYP450 inhibitor. As compared with the processd RPm, the CYP3A4, CYP4A5 of the unprocessed RPm demonstrate the marked downregulation, which leads to the increase of the poison absorbtion into the body with the result that the unprocessed RPm yields the marked hepatotoxication. The hepatotoxication was produced because the following 6 pathways were affected: ①PPAR signaling pathway, the chief toxicity target genes are RXRB, CYP7a1, Acadl, Apoa2, Cyp4a, FABP2 and MAPKKK5 etc. ②Calcium signaling pathway, the chief toxicity target genes are CAMK2B, CACNA1F, S100A1, F2R, Ryr1,Slc8a2 and Camk4 etc. ③Neuroactive ligand-receptor interaction, the chief toxicity target genes are Chrm4, Ntsr2, GABRR1, GRIK3 and F2R etc. ④Wnt signaling pathway, the chief toxicity target genes are Daam2, Rac1 etc. ⑤Complement and coagulation cascades, the chief toxicity target genes are F2R, Serpina1b, Cfi and FGA etc. ⑥Oxidative phosphorylation, the chief toxicity target genes are Atp5e, NDUFA1 etc. The above experimental results, for the first time , demonstrate on the gene level that the unprocessed Rpm toxicity is far stronger than the processed RPm one, and the toxicity of the water decoction of the unprocessed RPm is greater than the one of its acetone extracts, which shows that the chief toxicity components of the RPm are probably not only the anthraquinones, for example, the emodin, but the complex compounds produced by the interaction between the emondin and the stilbene glucoside which is the largest component of the unprocessed RPm. The result is accordance with the above effect of the RPm on the hepatic drugenzyme. Aftter being processed, in fact, the content of the stibene glucoside in the RPm markedly decreases. 2. The results on the pharmacodynamic differences between the unprocessed and processed RPm The results obtained show that the effects of processing on RPm pharmacodynamic behaviour received in the Chinese Material Medica are correct. It is known to author that this is the first experimental result in the research materials now available. The chief results are as follows: For the treatment of the antidepressant, the curative effect of the processed RPm is far better than the one of the unprocessed RPm. By contrast with the above results, the hypoblycemic effect of the unprocessed RPm is better than the one of the processed RPm. 3. The results on the Chemical Composition The results obtained by using HPLC-DAD fingerprint and by the determination of effective component content show that the main chemical components in the RPm after being processed do not disappear, but their contents change. The contents of the stilbene glucoside (SG) and emodin in the different samples were determined as follows: SG contents 5.512 % for the unprocessed RPm 3.811 % for the processed RPm (Steamed) 3.588 % for the processed RPm (black soybean) Emodin contents 0.094 % for the unprocessed RPm 0.119 % for the processed RPm (Steamed) 0.126 % for the processed RPm (black soybean) The combination of above experimental results on the toxicity, the pharmacodynamics and the chemical composition indicates that the changes of the content ratio of SG/emodin may be the substance base of the toxicity decrease and pharmacodynamic changes of the RPM by the processing.
Resumo:
首次从野桂花(Osmanthus yunnanensis Fr. P. S. Green)地上部分95%乙醇提取物中通过色谱分离得到20个化合物, 其中化合物20为新化合物。基于波谱数据它们被鉴定为(E)-阿魏酸二十烷基酯(1)、β-谷甾醇(2)、羽扇豆醇(3)、齐墩果酸(4)、7-oxo-β-sitosterol(5)、乙酰齐墩果酸(6)、(6′-O-palmitoyl)-sitosterol 3-O-β-D-glucoside(7)、rotundioic acid(8)、地榆糖甙Ⅱ(9)、27-O-(E)-对羟基肉桂酰-28-齐墩果酸(10)、27-O-(Z)-对羟基肉桂酰-28-齐墩果酸(11)、hycandinic acid ester(12)、绿原酸丁酯(13)、4,5-二咖啡酰奎尼酸丁酯(14)、4,5-dihydroxyprenyl caffeate(15)、28-O-β-D-glucopyranosyl rotundioic acid (16)、4-(6-O-caffeoyl-β-D-glucopyranosyloxy)-5-hydroxyprenyl caffeate (aohada-glycoside C, 17)、 4-β-D-glucopyranosyloxy-5-hydroxy-prenyl caffeate (aohada-glycoside A, 18)、β-胡萝卜甙(19)以及3-[O-β-D-(6-O-咖啡酰吡喃葡萄糖)]-甲基-2-烯-γ-内酯 (20)。化合物13、14、15和17有较强的α-葡萄糖甙酶抑制活性。当浓度为1 mg/ml时,它们对α-葡萄糖甙酶的抑制分别为61.5%、95.5%、72.1%、62.6%,活性高于阿卡波糖。 综述了木犀属植物化学成分及1993年以来苯丙素甙类化合物活性研究进展。 Twenty compounds were isolated from the 95% ethanol extract of the aerial parts of Osmanthus yunnanensis Fr. P. S. Green by chromatography for the first time. On the basis of spectral data, they were identified as (E)-ferulic acid eicosyl ester (1), β-sitosterol (2), lupenol (3), oleanolic acid (4), 7-oxo-β-sitosterol (5), acetyloleanolic acid (6), (6′-O-palmitoyl)-sitosterol 3-O-β-D-glucoside (7), rotundioic acid (8), ziyu glycosideⅡ (9), 3β-hydroxy-27-p-(E)-coumaroyloxy-olean-12-en-28-oic acid (10), 3β-hydroxy-27-p-(Z)-coumaroyloxyolean-12-en-28-oic acid (11), hycandinic acid ester (12), chlorogenic acid butyl ester (13), 4,5-di-O-caffeoylquinic acid butyl ester (14), 4,5-dihydroxyprenyl caffeate (15), 28-O-β-D-glucopyranosyl rotundioic acid (16), 4-(6-O-caffeoyl-β-D-glucopyranosyloxy)-5-hydroxyprenyl caffeate (aohada- glycoside C, 17), 4-β-D-glucopyranosyloxy-5-hydroxyprenyl caffeate (aohada- glycoside A, 18), β-daucosterol(19) and 3-[O-β-D-(6-O-caffeoylglucopyranosyl)]- methyl-2-en-γ-lactone (20). Compound 20 is a new one. Compounds 13, 14, 15 and 17 inhibit α-glucosidase with corresponding inhibitory rate of 61.5%, 95.5%, 72.1% and 62.6% at a concentration of 1 mg/ml, higher than acarbose. The chemical studies on Osmanthus genus and bioactivities of phenylpropanoid glycosides were summarized.
Resumo:
5-氟尿嘧啶(5-Fluorouracil, 5-FU)是一种抗代谢药物,广泛用于临床治疗结直肠癌、胃癌、乳腺癌等多种癌症,但其首过代谢显著、亲脂性较低,选择性差、毒副作用大。为克服这些缺点人们对5-FU进行了大量的修饰工作,包括小分子修饰以及与各种载体形成微球、微囊、纳米粒、共价前药等。 环糊精(Cyclodextrin,简称CD),可被结肠中的糖苷酶特异性地降解成小分子糖,而胃和小肠中由于缺乏相应的酶而使环糊精不被降解,这一特性在结肠药物的靶向输送及释放中有重要应用价值。环糊精中含有丰富的羟基,易进行化学修饰,将药物与环糊精通过共价键结合制成前药,使其在胃和小肠中不降解,而在盲结肠中被特异性的酶降解释出药物,达到结肠靶向释药的目的。研究表明,环糊精作为一种前药载体为结肠靶向释药和缓释、控释系统提供了一种有效的手段。 本工作选择5-氟尿嘧啶为模型药物、β-环糊精作为载体,通过中间体5-FU羧酸衍生物的制备及其与β-环糊精的偶联,合成了系列5-FU-β-CD前体药物,并利用紫外、红外、质谱、核磁、元素分析、热分析等手段对其进行结构表征。同时,还研究了前体药物的体外释药性质。具体内容包括: 1. 含有羧基的5-FU衍生物中间体的合成:(5-氟尿嘧啶-1-基)-乙酸(FUAC)、3-(5-氟尿嘧啶-1-基)-丙酸(FUPC)、5-(5-氟尿嘧啶-1-基)-戊酸(FUVC)的合成。 2. 中间体5-FU的羧酸衍生物与β-CD的偶联:分别通过以6-OTs-β-CD为中间体的取代法和活化酯法,合成了第一面取代和第二面取代的5-FU-β-CD大分子前体药物。在二面取代的前体药物制备中,通过改变原料的比例,合成了系列不同取代度(DS)的2-[(5-氟尿嘧啶-1-基)-乙酰基] -β-环糊精结合物。 3. 对上述前体药物进行体外释放研究:分别考察了前体药物在不同pH缓冲溶液中的水解行为及其在小鼠胃肠道人工体液中的酶解行为,并通过UV-Vis及HPLC对前体药物释放情况进行检测分析。 5-Fluorouracil(5-Fu), commonly known as a broad-spectrum antineoplastic drug, has been widely used in the treatment of various kinds of cancer including colon cancer for 40 years. However, this antitumor agent exhibits serious adverse effects, such as their marrow toxicity, gastrointestinal reaction and low selectivity in their clinical use. In order to improve its antitumor activity and reduce its toxicity, the compound was modified in various ways, including the formation of conjugated prodrugs with kinds of carrier, microsphere and nanoparticles etc. Cyclodextrins(CDs) are known to be barely capable of being hydrolyzed and only slightly absorbed in passing through the stomach and small intestine; however they are fermented into small saccharides by colonic microflora and thus absorbed as small saccharides in the large intestine. This biodegradation property of CDs may be useful as a colon-targeting carrier, and thus CD prodrugs may serve as a source of site-specific delivery of drugs to colon. It was demonstrated that prodrugs of CDs can provide a versatile means for construction of not only colon targeted delivery systems, but also delayed release systems. 5-Fluorouracil was taken as a model drug and β-CD as the carrier in this study. Series prodrugs of 5-FU was prepared through the preparation of reactive 5-FU derivatives containing carboxyl group and coupling to hydroxyl groups of CD. The structures of the conjugates were charactered by using IR, UV–vis, ESI-MS, 1H, 13C-NMR spectra, elemental analyses, and thermal analysis. In vitro hydrolysis behavior in aqueous solution and in rat gastrointestinal tract contents of the conjugates were also investigated. The main content of this dissertation includes following aspects: 1. The preparation of 5-FU derivatives containing carboxyl group: 5-Fluorouracil- acetic acid(FUAC)、3-(5-FU-1)-propionic acid (FUPC)、and 5-(5-FU-1)-valeric acid(FUVC). 2. The coupling of 5-FU derivatives to β-CD: 5-FU was selectively conjugated onto the primary or secondary hydroxyl groups of β-CD through an ester linkage, by the substitution of 6-OTs-β-CD and the activated ester method respectively. For the secondary face conjugation, the degree of substitution(DS) can be controlled by changing the mole ratio of the starting materials(FUAC and β-CD). 3. In vitro release behavior of the conjugates in aqueous solution and in rat gastro- intestinal tract contents of the conjugates were investigated, and the reaction was monitored and analyzed by using UV-Vis and HPLC methods.
Resumo:
胺及其衍生物是很多重要生物活性分子的结构单元,是合成天然产物和手性药物的重要中间体。 直接还原胺化由于其合成步骤简单而成为制备二级胺和三级胺的简便方法。为了发展一种较为简便的直接还原胺化反应,我们把研究的重点放在开发一种简便实用的有机小分子催化方法上。由文献调研可知,现已报道的直接还原胺化方法大多是催化醛或酮与一级胺或者脂肪二级胺的直接还原胺化,而醛或酮与芳香二级胺的直接还原胺化却尚无报道。在本文中,我们发现用简单的四甲基乙二胺(TEMED)在室温下以二氯甲烷为溶剂即可催化三氯氢硅对酮和芳香二级胺之间的直接还原胺化反应,并取得了高达92%的收率。该反应条件温和,底物普适性广,各种类型的酮均可以与芳香二级胺进行直接还原胺化,并且得到比较满意的收率。 同时,我们从手性Sulfoximine出发,设计和合成了一系列的Sulfoximine类新衍生物,并将其应用于间接还原胺化反应中。遗憾的是我们并没有得到预期的不对称催化效果。 Amines and their derivatives are basic structural motifs in natural products and pharmaceuticals and highly versatile building blocks for various organic substrates. Direct reductive amination (DRA) is a convenient method for the preparation of secondary and tertiary amines owing to its operational simplicity. In an effort to develop a simple and convenient procedure for direct reductive amination reaction, we focused our study on search for a mild and efficient organocatalytic system. In the literature, there are many reports concerning DRA between aldehydes or ketones and either primary amines or secondary aliphatic amines. But there are no reports concerning DRA between aldehydes or ketones and secondary aromatic amines. In this study, we have developed a highly practical method for the synthesis of tertiary amines by the direct reductive amination of ketones and secondary aromatic amines with tetramethylethylenediamine (TEMED) as the catalyst using HSiCl3 as the reducing agent in dichloromethane (affording up to 92% yield). This method can be carried out under mild conditions and is compatible with many functional groups. A variety of ketones were efficiently aminated with secondary aromatic amines to afford the corresponding amines in good to excellent yields. Starting from chiral sulfoximine, we designed and synthesized a series of new sulfoximine derivatives and tested their efficiencies as asymmetric organocatalysts for the reduction of imines, which, unfortunately, only exhibited low catalytic activity and enantioselectivity.
Resumo:
本论文对滇金足草(Goldfussia yunnanensis)、凋缨菊(Camchaya loloana)和长喙吴萸(Evodia vestia)的化学成分进行了研究,通过色谱分离得到40个化合物。主要基于波谱数据鉴定了它们的结构,其中10个为新化合物。 1.从滇金足草地上枝叶的95%乙醇提取物中共分离鉴定了16个化合物:泽漆内酯A(1)、18-羟基泽漆内酯A(2)、18-氧代泽漆内酯A(3)、18-羟基-3-O-β-D-吡喃葡萄糖-泽漆内酯A(4)、3-O-β-D-吡喃葡萄糖-泽漆内酯A(5)、3-O-β-D-吡喃半乳糖-泽漆内酯A(6)、6-E-肉桂酰哈巴俄苷(7)、E-哈巴俄苷(8)、5,6-异亚丙二氧基哈巴俄苷(9)、β-谷甾醇(10)、β-胡萝卜苷(11)、齐墩果酸(12)、肉桂酸(13)、麦角固醇(14)、硬脂酸(15)和丁二酸(16)。其中2-7为新化合物。5,6-异亚丙二氧基哈巴俄苷(9)以人工产物形式得到。 2.从凋缨菊地上枝叶的95%乙醇提取物中分离并鉴定了13个化合物:凋缨菊内酯A~C (17-19)、1β-乙酰基凋缨菊内酯C(20)、b-谷甾醇(10)、β-胡萝卜苷(11)、羽扇豆醇(21)、桦木醇(22)、桦木酸(23)、芥子醇(24)、紫丁香苷(25)、咖啡酸(26)和熊果酸(27)。其中化合物17-20为桉叶烷内酯类新化合物。化合物17、18、20对细胞株HepG2的GI50依次为7.80、7.08、4.99 µg/mL。 3.从长喙吴萸(E. vestia)地上枝叶的95%乙醇提取物中分离并鉴定了13个化合物:佛手内酯(28)、花椒毒素(29)、异茴芹内酯(30)、七叶内酯(31)、东莨宕素(32)、瑞香素(33)、异紫花前胡内酯(34)、茵芋碱(35)、山刈碱(36)、白鲜碱(37)、黄柏酮(38)、柠檬苦素(39)和对羟基苯甲醛(40)。 4.综述了1990—2007年期间从菊科植物中发现的桉叶烷-12,6内酯的化学结构、生物活性、生物转化及化学合成方面的研究进展。 Phytochemical investigation on Goldfussia yunnanensis, Camchaya loloana, and Evodia vestia, led to the isolation of 40 compounds, 10 of which were new ones. 1. Six new compounds were isolation from 95% ethanolic extract of the aerial parts of G. yunnanensis, and identified as 18-hydroxyhelioscopinolide A (2), 18-oxohelioscopinolide A (3), 18-hydroxy-3-O-β-D-glucopyranosylhelioscopinolide A (4), 3-O-β-D-glucopyranosylhelioscopinolide A (5),3-O-β-D-Galactopyranosyl helioscopinolide A (6), 6-O-trans-cinnamoyl E-harpagoside (7). The known compounds isolated were helioscopinolide A (1), E-harpagoside A (8), 5,6-isopropylidene E-harpagoside A (9), β-sitosterol (10), β-daucosterol (11), oleanolic acid (12), cinnamic acid (13), ergosterol (14), stearic acid (15) and succinic acid (16). Compound 9 was an artifact. 2. Four new compounds, loloanolides A – C (17 - 19) and 1β-acetoxy-loloanolide C (20), were isolation from 95% ethanolic extract of the aerial parts of C. loloana. The known ones were β-sitosterol (10), β-daucosterol (11), lupeol (21), betulin (22), betulinic acid (23), sinapyl (24), syringin (25), caffeic acid (26) and ursolic acid (27). The GI50 values of compounds 17, 18 and 20 to HepG2 cell line were 7.80, 7.08 and 4.99 µg/mL, respectively. 3. Thirteen were isolated from 95% ethanolic extract of the aerial parts of E. vestia for the first time. They were determined to be bergapten (28), xanthotoxin (29), isopimpinellin (30), esculetin (31), scopoletin (32), daphnetin (33), marmesin (34), skimmianine (35), confusameline (36), dictamine (37), obacunone (38), limonin (39) and p-hydroxy phenyl aldehyde (40). 4. The structures, biological activities, biotransformation and chemical syntheses of eudesmane-12, 6-olides from the Asteraceae during 1990-2007 were reviewed.
Resumo:
本论文由三章组成。第一章为综述,概述了植物中环烯醚萜类化合物的研究进展;第二和第三章为实验论文,分别报道了唇形科药用植物绵参和蔷薇科药用植物地榆的化学成分研究。 第一章概述了植物中环烯醚萜类化合物的研究成果,主要包括结构类型及药理活性等方面。 第二章包括两个部分。第一部分报道了藏药绵参(Eriophyton wallichii Benth)地上部分甲醇提取物的化学成分。采用正、反相硅胶柱层析等各种分离方法,从中共分离出7个化合物,有6个化合物为首次从该植物中分离得到,分别为β-谷甾醇(1),夏至草苦素(marrubiin,2),乌苏酸(3),cimigoside(4),5-deoxyantirrhinoside(5),8-表马钱子酸葡萄糖苷(8-epiloganic acid,6)和apigenin 7-(6''-p-coumaroyl)glucoside(7)。第二部分,采用高效液相色谱-质谱联用技术对绵参地上部分的甲醇提取物进行了分析,通过标准品对照紫、外光谱分析以及多级质谱分析与文献对照鉴定了8个成分,分别是:8-epiloganic acid(Ⅰ),quercitrin 3-glucoside-7-(6''-p-coumaroyl)glucoside(Ⅱ),ajugoside(I) (Ⅲ),chrysoeriol 7-O-E-p-coumaroyl-3-O-b-D-glucoside(Ⅳ),helichrysoside(Ⅴ),生物碱(Ⅵ),apigenin 2,3-dihydrogen-7-(6''-p-coumaroyl) glucoside(Ⅶ),apigenin 7-(6''-p-coumaroyl) glucoside(Ⅷ)。 第三章报道了中药地榆根部乙醇提取物正丁醇相的化学成分,通过正、反相硅胶柱层析等各种分离方法,从中分离得到8个化合物,分别为3,4¢- O-二甲基逆没食子酸(8),3,3¢,4¢-O-三甲基逆没食子酸(9)和3,4¢-O-二甲基逆没食子酸-4-O-b-D-木糖苷(10),19a-羟基-3-O-(a-L-阿拉伯糖)乌苏酸-28-O-b-D-葡萄糖苷(11), 3b-[(a-L-arabinopyranosyl)oxy]-urs-11,13(18)-dien-28-oic acid b-D- glucopyranosyl ester(13),3-O-a-L-arabinopyranosyl-urs-12,18(19)-dien-28-oic acid b-D-glucopyranosyl ester(14),儿茶素(15),还有一种可能是皂苷11的工作产物(12)。 This dissertation consisted of three chapters. The first chapter elaborated the progress of iridoids occurring in plants. The later two chapters respectively elaborated the chemical constituents of Eriophyton wallichii Benth. and Sanguisorba officinalis L. The first chapter is a review of the research progress of iridoids occurring in plants, which includes their structure and pharmacology. The second chapter consisted of two parts. The first part is about the chemical constituents of methanol extraction from the aerial parts of Eriophyton wallichii Benth. Seven compounds were isolated and identified. Among them, the compounds of marrubiin, ursolic acid, cimigoside, 5-deoxyantirrhinoside, 8-epiloganic acid,apigenin 7-(6''-p-coumaroyl)glucoside were firstly reported in this plant. A HPLC-MSn method was developed for rapid identification of major compounds of Eriophyton wallichii. A total of 8 peaks in the chromatograms were unequivocally determined (peaks 1, 8) or tentatively identified (peaks 2-7) based on the detailed UV and tandem mass spectra analysis. Seven components were identified as 8-epiloganic acid(Ⅰ),Quercitrin 3-glucoside-7-(6''-p-coumaroyl)glucoside(Ⅱ),ajugoside(I)(Ⅲ),Chrysoeriol 7-O-E-p-coumaroyl-3-O-b-D-glucoside(Ⅳ),helichrysoside(Ⅴ),apigenin 2,3-dihydrogen-7-(6''-p-coumaroyl) glucoside(Ⅵ),apigenin 7-(6''-p-coumaroyl) glucoside(Ⅶ)。 The third chapter elaborated the chemical constituents of methanol extraction from Sanguisorba officinalis L, eight compounds were isolated from this plant by repeat column chromatography over silica gel. These compounds were identified as 3,4′-O-dimethylellagic acid, 3,3′,4′-O-trimethylellagic acid, 3,4′-O-dimethylellagic acid-4-O-b-D-xyloside, 3b-O-a-L-arabinopyranosyl-19a- hydroxyl-urs-12-en-28-oic acid 28-b-D-glucopyranoside, 3b-[(a-L-arabinopyranosyl)oxy]-urs-11,13(18)-dien- 28-oic acid b-D-glucopyranosyl ester,3-O-a-L–arabinopyranosyl-urs-12,18(19) -dien-28-oic acid b-D-glucopyranosyl ester, catechin.
Resumo:
毛壳霉属(Chaetomium)和曲霉属(Aspergillus)真菌产生多种具有生物活性的化合物。为系统阐明两属微生物的次生代谢物,对三种毛壳霉、两种曲霉真菌分别进行固态发酵,以色谱和波谱技术研究发酵物中的成分,分离鉴定了51个化合物,其中23个为新化合物,测试了部分化合物对肿瘤细胞的活性。 1、从螺卷毛壳霉(C. cochloides)固态发酵物中分离鉴定了11个化合物,3个新化合物为螺卷毛壳霉素A~C(1~3)。化合物1、3及dethio-tetra (methylthio) chetomin(4)对Bre-04、Lu-04和N-04细胞株生长抑制的GI50值为0.05~7.0 μg/mL。 2、从印度毛壳霉(C. indicum)固态发酵物中鉴定的三个异喹啉生物碱印度毛壳霉素A~C(12~14)代表两类骨架新颖的异喹啉生物碱。 3、从巴西毛壳霉(C. brasiliense)固态发酵物中鉴定了11个化合物,其中Mollicellins I~J(15~16)、2-Hydroxymethyl-6-methylmethyleugenin(19)为新化合物。化合物16和Mollicellin H(18)对Bre-04、Lu-04、N-04细胞株生长抑制的GI50值在2.5~8.6 μg/mL。 4、从土曲霉(A. terreus)固态发酵物中鉴定了18个化合物。5个为新化合物为Terretonin A~D(24~27)和Asterrelenin(28),24~27为二倍半萜化合物,28为吲哚生物碱。 5、从杂色曲霉(A. versicolor)固态发酵物中鉴定了16个化合物。9个新的化合物Brevianamides K~N (40~43)、Averins A~C (44~46)和Glyanphenines A~B (47~48)代表三种类型的生物碱。 6、综述了1997-2007年间新的二倍半萜的研究进展。 The fungi of the genera Chaetomium and Aspergillus produce various secondary metabolites with biological activities. In order to systematically study the secondary metabolites, the solid-state fermented rice culture of three species of Chaetomium and two of Aspergillus were chemically studied. By the means of chromatograhy and spectroscopy, 55 compounds were isolated and identified, among of them 23 were new ones. The biological activities of some compounds were investigated. 1. From the fungus C. cochliodes, three new epipolythiodioxopiperazines, chaetocochins A-C (1-3) were isolated, together with 8 known ones (4-11). Compounds 1, 3 and 4 showed growth inhibitory effects against cancer cell lines Bre-04, Lu-04 and N-04 with GI50 values from 0.05 to 7.0 μg/mL. 2. Three novel isoquinolines Chaetoindicins A-C (12-14) were isolated and identified from the fungus C. indicum. Chaetoindicin A, Chaetoindicins B-C represented two classes of novel carbon skeletons. 3. Three new compounds, Mollicellins I-J (15-16), and 2-hydroxymethyl-6-methylmethyleugenin (19), were isolated from C. brasiliense. Compound 16 and Mollicellin H (18) showed growth inhibitory effects against cancer cell lines Bre-04, Lu-04 and N-04 with GI50 values from 2.5 to 8.6 μg/mL. 4. Eighteen compounds were isolated from the fungus A. terreus. Terretonin A-D(24 - 27)and Asterrelenin(28) are new compounds belonging to sesterterpoids and indole-ralated alkaloid, respectively. 5. From the fungus A. versicolor, sixteen secondary metabolites, including nine new ones, Brevianamides K-N (40-43), Averins A-C (44-46), and Glyanphenines A-B (47-48), were isolated and identified. Brevianamides K-N (40-43), Averins A-C (44-46), and Glyanphenines A-B (47-48) represented three classes of alkaloids. 6. New sesterterpenes and their bioactivities reported from 1997 to 2007 were summarized.
Resumo:
本论文由四部分组成,前三部分为实验论文,第四部分为文献综述。第一、二部分分别报道了中药西藏胡黄连和鸡矢藤的化学成分研究结果。从两种药用植物中共分离和鉴定了32个化学成分,其中3个为新化合物。第三部分为黄芪多糖的提取工艺研究。第四部分概述了近年来植物多糖的研究进展。 第一章为西藏胡黄连化学成分研究。通过正、反相硅胶柱层析等分离方法从药用植物西藏胡黄连(Picrorhiza scrophulariiflora Pennell)的根茎中共分离纯化出7个化合物。运用MS、1H-NMR、13C-NMR、DEPT、HSQC和HMBC等现代谱学方法,结合理化分析对这些化合物的结构进行了分析鉴定。7个化合物中有两个是酚性的葡萄糖苷类成分:西藏胡黄连酚苷D (1)、4-O-β-D-(6-O-vanilloyl glucopyranosyl) vanillic acid (6);四个苯乙基苷类化合物:plantamajoside (2)、plantainoside D (3)、西藏胡黄连苷A (4) 和西藏胡黄连苷F (5);一个苯基小分子化合物:香豆酸甲酯 (7)。其中化合物1和5未见文献报道,确定为新化合物;化合物3为首次从该种植物中分到。 第二章为鸡矢藤化学成分研究。从鸡矢藤(Paederia scandense (Lour) Merrill)全草中分离出25个化合物,通过理化常数和波谱数据鉴定了它们的结构。25个化合物中包括一个蒽醌类成分:茜根定-1-甲醚 (1);两个香豆素:异东莨菪香豆素 (2)和5-羟基-8-甲氧基吡喃香豆素 (3);两个香豆素-木脂素化合物:臭矢菜素 B (4)和臭矢菜素 D (5);一个木脂素:异落叶松树脂醇 (6);两个黄酮:diadzein (7)和蒙花苷 (8);三个三萜类化合物:齐墩果酸 (9)、乌苏酸 (10)和 3-O-β-D-吡喃葡萄糖基乌苏烷 (11);三个甾体及其糖苷:b-谷甾醇 (12)、胡萝卜苷 (13)和(24R)-豆甾-4-烯-3-酮 (14);六个小分子化合物:对羟基苯甲酸 (15),咖啡酸 (16),香豆酸 (17),丁烯二酸 (18),3,5-二甲氧基-4-羟基苯甲酸(19),咖啡酸-4-O-β-D-吡喃葡萄糖苷(20);五个环烯醚萜类化合物:鸡矢藤苷 (21),鸡矢藤酸 (22),鸡矢藤酸甲酯 (23),saprosmoside E (24)和paederoside B (25)。其中化合物25未见文献报道,为新化合物。化合物1~8、11、14、15~20为首次从该化合物中分离得到。同时对鸡矢藤中环烯醚萜类化合物做了高效液相-串联质谱(HPLC-MSn)分析,探讨了这类化合物的质谱裂解规律。 第三章为黄芪多糖的提取工艺研究。首先确定了黄芪多糖含量的测定方法,并进行了方法学验证;其次探讨了黄芪中黄芪多糖的提取工艺,确定以酶法-Sevag法联用来去除黄芪多糖中的蛋白质,可使其提取物中黄芪多糖总含量达到70%以上。 第四章为近年来植物多糖的研究进展。主要包括植物多糖的提取纯化、多糖的定性定量检测方法、多糖的结构分析和多糖的药理活性。 This dissertation consists of four parts. The first and second parts reports the studies on the chemical constituents of medicinal plants of Picrorhiza Scrophulariiflora and Paederia scandens. The third part is about the extract technique of Astragalan Polysaccharide (APS). The last part reviews the progress of the studies on plant polysaccharides. The first chapter is about the chemical constituents of P. Scrophulariiflora which is widely used as an important medicine to treat various immune-related diseases. A new phenyl glycoside, scrophenoside D (1) and a new phenylethyl glycoside, scroside F (5), together with five known compounds, plantamajoside (2), plantainoside D (3), scroside A (4), 4-O-β-D-(6-O-vanilloylglucopyranosyl) vanillic acid (6); and methyl-p-coumarate (7) were isolated from the stems of P. scrophulariiflora. Their structures were elucidated by spectroscopic and chemical methods. The second chapter is about the chemical constituents of medicinal herb of P. scandens. Twenty-five compounds were isolated and purified by normal and reversed phase silica gel column chromatography. By physicochemical properties and spectral analysis, their structures were identified as rubiadin-1-methylether (1), isoscopoletin (2), 5-hydroxyl-8-methoxyl-coumarin (3), cleomiscosin B (4), cleomiscosin D (5), isolariciresinol (6), diadzein (7), linarin (8), oleanolic acid (9), ursolic acid (10), 3-O-β-D-glucopyranosyloxyl-ursane (11), b-sitosterol (12), b-daucosterol (13), (24R)-stigmast-4-ene-3-one (14), p-hydroxyl-benzoic acid (15), caffic acid (16), coumaric acid (17), trans-butenedioic acid (18), 3,5-dimethoxyl-4-hydroxylbenzoic acid (19), caffeic acid 4-O-β-D-glucopyranoside (20), paederoside (21), paederosidic acid (22), paederosidic acid methyl ester (23), saprosmoside E (24), paederoside B (25). Among them, compound 25 is a new compound. Compounds 1~8、11、14、15~20 were isolated from this plant for the first time. Futhermore, we studied the HPLC-MSn analysis and investigation of fragmentation behavior of the sulfur-containing iridoid glucosides. The third chapter is about the extracting process of Astragalan Polysaccharide (APS). The method of the content determination is built. The optimum condition of extraction of polysaccharides from Radix Astragali is defined and the more effective way to remove protein is combined enzyme method with Sevag method, by which the content of polysaccharides extract can be up to 70%. The last part is a review of the research progress of the plant polysaccharides, which includes its extraction, isolation, purification, determination, structure analysis, and pharmacology.
Resumo:
本文对禄春安息香(Styrax macranthus)种子和攀援孔药花(Porandra scandens)全草的化学成分进行了研究,共获得30个化合物,其中2个为新化合物。 从禄春安息香种子95%乙醇提取物中分离并鉴定了12个化合物,其中2个新化合物鉴定为3-[7-methoxy-2-(3,4-methylenedioxy phenyl) benzofuran-5-yl] propyl 3-[7-methoxy-2-(3,4-methylenedioxyphenyl)benzofuran-5-yl] propanoate (1) 和去甲氧基-egonol-龙胆双糖甙 (2);已知化合物分别为2-(3,4-二氧亚甲基苯基)-5-甲酰基-7-甲氧基-苯并呋喃 (3)、egonol (4)、去甲氧基-egonol (5)、去甲基-egonol (6)、egonol-葡萄糖甙 (7)、egonol-龙胆双糖甙 (8)、egonol-龙胆三糖甙 (9)、豆甾醇 (10)、二十四烷酸 1-甘油酯 (11) 和胡萝卜甙 (12)。生物活性测试发现,化合物2具有促进雌激素E2合成的作用。 从攀援孔药花全草95%乙醇提取物中分离并鉴定了19个化合物:(2S,3S,4R)-2-[(2R)-2-羟基-二十一烷酰基氨基]-二十一烷-1,3,4-三醇 (13)、(2S,3S,4R)–2–二十四烷酰基氨基-十八烷-1,3,4-三醇 (14)、胡萝卜甙 (12)、β-谷甾醇 (15)、(20S,22E,24R)-5α,8α-表二氧-麦角甾-6,22-二烯-3β-醇 (16)、6β-羟基-豆甾-4-烯-3-酮 (17)、十六烷酸 1-甘油酯 (18)、桦木酸 (19)、大黄素 (20)、二十二烷酸 1-甘油酯 (21)、对羟基苯甲醛 (22)、十七烷酸 1-甘油酯 (23)、金色酰胺醇乙酸酯(24)、十九烷酸 1-甘油酯 (25)、棕榈酸 (26)、(E)-p-香豆酸 (27)、(22E,24S)-24-麦角甾醇-7,22-二烯-3β,5α,6β-三醇 (28)、2-去氧-β-蜕皮激素 (29)和auranamide (30)。 综述了近十年来发现的2-芳基苯并呋喃类新木脂素的结构特征、来源、生物活性和化学全合成。 Phytochemical investigation on the seeds of Styrax macranthus and the whole plants of Porandra scandens led to the isolation of thirty compounds, two of which were new ones. Two new 2-aryl benzofuran derivatives, 3-[7-methoxy-2-(3,4-methylenedioxy phenyl) benzofuran-5-yl]propyl 3-[7-methoxy-2-(3,4-methylenedioxyphenyl)benzo furan-5-yl]propanoate (1) and demethoxy egonol gentiobioside (2), were isolated from the 95% aqueous ethanolic extract of the seeds of Styrax macranthus, together with 7-methoxy-2-(3,4-methylenedioxyphenyl) benzofuran-5-carbaldehyde (3), egonol (4), demethoxy egonol (5), demethyl egonol (6), egonol glucoside (7), egonol gentiobioside (8), egonol gentiotrioside (9), stigmasterol (10), 2,3-dihydroxypropyl tetracosoate (11), and daucosterol (12). In vitro test, compound 2 promote the synthesis of estrogen E2. Nineteen compounds were isolated from the 95% aqueous ethanolic extract of the whole plant of Porandra scandens for the first time. Their structures were identified as (2S,3S,4R)-2-[(2R)-2-hydroxy-heneicosanoylamino]-1,3,4- heneicosanetriol (13), (2S,3S,4R)-2-tetracosanoylamino-1,3,4-octadecanetriol (14), daucosterol (15), β-sitosterol (12), (20S,22E,24R)-5α,8α-epidioxy-ergosta-6,22-diene- 3β-ol (16), 6β-hydroxylstigmast-4-en-3-one (17), 1-glycerol-1-hexadecoate (18), betulinic acid (19), emodin (20), 1-glycerol-1-docosoate (21), p-hydroxybenzaldehyde (22), 1-glycerol-1-heptadecoate (23), aurantiamide acetate (24), 1-glycerol-1- nonadecoate (25), palmatic acid (26), (E)-p-coumaric acid (27), (22E,24S)- 24-metbylcbolesta-7,22-diene-3β,5α,6β-triol (28), 2-deoxycrustecdysone (29), and auranamide (30). The characteristic, natural resource, bioactivity, and the total synthesis of 2-aryl benzofurans were reviewed.
Resumo:
本论文由四章组成,第一、二、三章为实验论文,分别报道了中药羌活、菊花、全缘叶绿绒蒿的化学成分的高效液相色谱(HPLC)和液相色谱-质谱(LC-MS)联用分析以及挥发油的气相色谱-质谱(GC-MS)联用分析。第四章概述了重要藏药材化学成分的研究进展。 第一章首先对28批不同产地的羌活药材进行了HPLC分析,建立了羌活的指纹图谱。结果表明,不同产地羌活的化学成分基本相似,但是各组分在含量上存在较大差异。其次,对羌活的主要化学组分包括紫花前胡苷、紫花前胡素、6'-O-反式阿魏酸紫花前胡苷、茴香酸对羟基苯乙酯、羌活醇和异欧前胡素进行了定量分析。此外,针对同一产地不同采集时间的羌活挥发油进行系统分析,结果表明它们的化学成分基本相似,主要含有a-蒎烯、b-蒎烯、柠檬烯和龙脑乙酸酯等,只是各组分含量有所变化,这说明采集药材时要注意采集时间。 第二章分别报道了不同产地不同品种菊花非挥发性成分的液相色谱-二极管阵列检测-串联质谱(LC-PDA-MSn)分析和挥发性成分的气相色谱-质谱(GC-MS)联用分析比较。首先通过液相色谱-质谱-串联质谱对各色谱峰进行定性分析,通过与标准品对照,以及UV和MSn提供的结构信息,结合文献报道共鉴定了11个化学成分,包括绿原酸和10个黄酮化合物,并比较了不同品种菊花的化学成分相同之处和不同之处。另外,对七种不同品种不同产地的菊花挥发性成分通过GC-MS分析表明其主要挥发性成分为单萜类、倍半萜类化合物,共有成分樟脑、龙脑和龙脑乙酸酯等,各成分在不同挥发油中的含量变化明显。 第三章为藏药全缘叶绿绒蒿不同部位挥发油成分的气相色谱-质谱(GC-MS)联用分析,比较其挥发油化学成分及其含量变化的异同点。研究结果表明,全缘叶绿绒蒿花精油的化学成分明显多于全草部位,且两者主要成分有较大的差别。 第四章综述了青藏高原重要藏药材化学成分的研究进展。分别对藏药的资源特色和110多种常用重要藏药材的化学成分的研究情况以及藏药未来发展思路进行了阐述,以期对相关的研究提供一些信息。 This dissertation consists of four parts. The first part reports studies on the fingerprint of Notopterygium incisum and N. forbesii by HPLC-PDA-MSn, and on the constitutents of essential oil by GC-MS. The second part elaborates the chemical constitutents of Chrysanthemum L. by LC-MS and GC-MS analysis. The third part reports the chemical compositions of the essential oil from the different parts of Meconopsis integrifolia. The fourth part reviews on the progress of the studies on the chemical constitutents in Tibetan medicines. The first chapter is about HPLC analysis of a traditional Chinese herbal medicine Qiang-huo (Notopterygium incisum and N. forbesii ). Firstly, based on analyzing and contrasting the relative retention time and relative paek area in chromatographic fingerprint, the HPLC chromatographic fingerprint of Notopterygium incisum was established, which can used as a scientific basement for the quality evalution of this herb. Secondly, quantitative analysis were performed on the main chemical constitutents of Notopterygium incisum and N. forbesii including nodakenin, nodakenetin, 6’-O-trans-feruloylnodakenin, p-hydroxypenethylanisate, notopterol and isoimperatorin. The results indicated that the contents were variable related to different growth regions. Lastly, the essential oil of Notopterygium incisum collected in different harvest times is analyzed by GC-MS. The second chapter is about HPLC-MS and GC-MS analysis of several species of Chrysanthemum L. Firstly, eleven compounds including chlorogenic acid and ten flavone compounds were identified in the methanol extract of Chrysanthemum morifolium Ramat. from different regions by HPLC-MS analysis. Secondly, the essential oil of seven different species of Chrysanthemum L.were extracted by steam distillation, and its compositions were isolated and identified by GC-MS. The main active constitutents such as camphor, borneol and bornyl acetate were detected, but the relative content varied notably. The third chapter is about GC-MS analysis of the essential oil from different parts of Meconopsis integrifolia. It indicated great difference of the chemical compositions of their oil in the flowers and residual overground part. The last chapter is a review of the research progress of the Tibetan medicines, which includes their features and their main chemical constitutents.
Resumo:
钮子瓜(Zehneria maysorensis Arn.)是一种常用的中草药,其性味苦、凉,主要功效为清热利湿、散风止痛,主治膀胱炎、头痛。体外活性筛选实验表明,袋花忍冬(Lonicera saccata Rehd.)95%乙醇提取物的乙酸乙酯部分对血管紧张素转化酶显示较强的抑制活性。为明确钮子瓜的药用物质基础和袋花忍冬中具有ACE抑制活性的成分,首次对两个植物的成分进行了研究。 1. 从钮子瓜95%乙醇提取物中主要通过色谱方法首次分离了14个化合物,通过波谱方法鉴定为(2S,3S,4R,10E)-2-[(2R)-2-羟基二十四烷酰基氨基]-10-十八烷-1,3,4-三醇(1)、(2S,3S,4R)-2-二十四烷酰基氨基-十八烷-1,3,4-三醇 (2)、胡萝卜苷(3)、swertish (4)、苯甲酸(5)、水杨酸(6)、loliolide (7)、胸腺嘧啶(8)、尿嘧啶(9)、(23Z)-9,19-环阿尔廷-23-烯-3β,25-二醇(10)、(20S,22E,24R)-5α,8α-表二氧-麦角甾-6,22-二烯-3β-醇(11)、十六烷酸 1-甘油酯(12)、大豆脑苷Ⅰ(13)和(22E,24S)-24-甲基-5α-胆甾-7,22-二烯-3β,5α,6β-三醇(14)。其中化合物4为一黄酮碳苷,具有旋转异构现象,有止痛作用;化合物6具有抗炎、镇痛、减热的活性,它们可能是钮子瓜药用物质基础的一部分。 2. 从袋花忍冬95%乙醇提取物中首次分离并鉴定了16个已知化合物:胡萝卜苷(3)、(20S,22E,24R)-5α,8α-表二氧-麦角甾-6,22-二烯-3β-醇(11)、十六烷酸 1-甘油酯(12)、E-p-coumaryl behenate (15)、谷甾醇(16)、2,6-dihydroxyhumula-3(12), 7(13),9(E)-triene (17)、环阿尔廷-25-烯-3β,24ξ-二醇 (18)、二十四烷酸 (19)、2,4-二羟基-3,6-二甲基苯甲酸甲酯 (20)、乌苏酸 (21)、柚皮素 (22)、木犀草素 (23)、柏双黄酮(24)咖啡酸 (25)、洋芹素(26)和木犀草素-7-O-β-D-葡萄糖苷 (27)。其中木犀草素(23)和咖啡酸(25)含量较高,它们为抑制ACE活性的成分。 3.综述了黄酮碳苷的旋转异构现象。 Zehneria maysorensis is a folk medicine for the treatment of cystitis and headache. The ethyl acetate soluble fraction of the 95% ethanol extract of Lonicera saccata showed obvious ACE inhibitory activity in vitro. To reveal their active constitutents, they were subjected to chemically study. From the 95% ethanol extract of the whole plants of Zehneria maysroensis fourteen compounds were isolated for the first time. On the basis of spectral data and/or by comparison with authentic samples, they were characterized to be (2S,3S,4R,10E)-2-[(2R)-2-hydroxytetracosanoylamino]-10-octadecene-1,3,4-triol (1), (2S,3S,4R)-2-tetracosanoylamino-1,3,4-octadecanetriol (2), daucosterol (3), swertish (4), benzoic acid (5), salicylic acid (6), loliolide (7), thymine (8), uracil (9), (23Z)-9,19-cycloart-23-ene-3β,25-diol (10), (20S,22E,24R)-5α,8α-epidioxy-ergosta- 6,22-diene-3β-ol (11), 2,3-dihydroxypropyl hexadecoate (12), soya-cerebroside (13) and (22E,24S)-24-methyl-5α-cholesta-7,22-diene-3β,5α,6β-triol (14). Compound 4, a C-glycosylflavone, showed a very interesting rotational isomerism. Compounds 4 and 6 may be the active constituents of Zehneria maysorensis considering their sedative and anti-inflammation activity, respectively. From the whole plants of Lonicera saccata, sixteen compounds were isolated for the first time. On the basis of spectral data and/or by comparison with authentic samples, they were identified to be daucosterol (3), (20S,22E,24R)-5α,8α-epidioxy- ergosta-6,22-diene-3β-ol (11), 2,3-dihydroxypropyl hexadecoate (12), E-p-coumaryl behenate (15), β-sitosterol (16), 2,6-dihydroxyhumula-3(12),7(13),9(E)-triene (17), cycloart-25-ene-3β,24ξ-diol (18), tetracosanoic acid (19), methyl 2,4-dihydroxy- 3,6-dimethylbenzoate (20), ursolic acid (21), naringenin (22), luteolin (23), cupressuflavone (24), caffeic acid (25), apigenin (26) and luteolin-7-O-β-D- glucopyranoside (27). Luteolin (23) and caffeic acid (25) were the ACE inhibitory active constituents. Rotational isomerism for C-glycosylflavonoid was reviewed.
Resumo:
活性筛选中发现尼泊尔水东哥 (Saurauia napaulensis DC.) 树皮95%乙醇提取物具有α-淀粉酶抑制活性、水麻(Debregeasia orientalis) 枝叶95%乙醇提取物显示血管紧张素转化酶(ACE)抑制活性、青荚叶(Helwingia japonica (Thunb.) Dieter.) 95%乙醇提取物的中小极性部分显示蛋白酪氨酸磷酸酯酶(PTP)1B抑制活性。为全面了解它们的成分及相关活性成份,主要运用硅胶柱层析方法从这三个植物分离得到39个化合物,通过波谱分析或与已知品对照的方法对其进行了鉴定。对木姜冬青(Ilex litseaefolia Hu et Tang)的成分做了进一步的研究,取得了如下结果。 1. 从尼泊尔水东哥树皮的95%乙醇提取物分离并鉴定12个化合物: auranamide、aurantiamide benzoate、齐墩果酸、β-谷甾醇、β-胡萝卜甙、乌苏酸、2α,3α-二羟基-12-烯-28-乌苏酸、2α,3β,24-三羟基-12-烯-28-乌苏酸、(2S,3S,4R,10E)-2-[(2'R)-2' -hydroxytetracosanoylamino] -10-octadecene -1,3,4-triol、 2α,3α,24-三羟基-12-烯-28-齐墩果酸、2α,3β-二羟基-12-烯-28-乌苏酸和2α,3α,24-三羟基-12-烯-28-乌苏酸。 2. 从水麻枝叶的95%乙醇提取物分离并鉴定了18个化合物:棕榈酸、二十烷酸、二十烷酸甲酯、β-谷甾醇、Monogynol A、桦木酸、Hederagenin、β-胡萝卜甙、18αH-19(29)-烯-3-酮-乌苏烷、3,4-开环-20(30)-烯-乌苏烷-3-酸、Pomolic acid,表儿茶素、儿茶素、槲皮素、槲皮素-3-O-β-D-吡喃葡萄糖苷、紫丁香苷、紫丁香酚苷和山萘酚-3-O-芸香糖。儿茶素、槲皮素和槲皮素-3-O-β-D-吡喃葡萄糖苷为具有ACE抑制活性的成分。 3. 从木姜冬青95%乙醇提取物的乙酸乙酯部分分离并鉴定了5个化合物: 2-O-β-D-吡喃葡萄糖-6,2´-二羟基-4,4´-二香草酰氧甲基-1,1´-二苯醚(冬青苷)和四个已知化合物:七叶内酯、香草酸、3,4-二甲氧基苯乙酸和vanilloylcalleryanin。冬青苷为新化合物。 4. 从青荚叶95%乙醇提取物的中小极性部分分离并鉴定了9个化合物:β-谷甾醇、β-胡萝卜苷、羽扇豆醇、桦木醇、桦木酸、棕榈酸甘油酯、桂皮酸、6αH-4-烯-3-酮-豆甾醇和6βH-4-烯-3-酮-豆甾醇。 5. 对1985-2006年间天然二苯醚类化合物及活性研究进展进行综述. The in vitro test indicated that the 95% ethanolic extract of the barks of Saurauia napaulensis DC showed α-amylase inhibitory activity, the 95% ethanolic extract of the whole plants of Debregeasia. orientalis showed angiotensin converting enzyme (ACE) inhibitory activity and some fractions of the 95% ethanolic extract of the aerial parts of Helwingia japonica showed protein tyrosine phosphatase (PTP)1B inhibitory activity. In order to investigate components and active compounds of the three plants, they were chemically studied mainly using. Thirty-nine compounds were isolated predominantly by column chromatography identified by spectral methods or comparing them with authentic samples. Further investigation of Ilex litseaefolia Hu et Tang was carried out. Major results are as follows: 1. Twelve compounds were isolation from the 95% ethanolic extract of the barks of S. napaulensis DC. They were identified as auranamide, aurantiamide benzoate, oleanolic acid, β-sitosterol, β-daucosterol, ursolic acid, 2α,3α-dihydroxyurs-12-en-28-oic acid, 2α,3β,24-trihydroxyurs-12-en-28-oic acid, (2S,3S,4R,10E)-2-[(2'R)-2'-hydroxytetracosanoyl amino]-10-octadecene-1,3,4-triol, 2α,3α,24 -trihydroxyolean-12-en-28-oic acid, 2α,3β-dihydroxyurs-12-en-28-oic acid, and 2α,3α,24-trihydroxyurs-12-ene-28-oic acid, respectively, by spectral methods or comparing them with authentic samples. 2. Eighteen compounds were isolation from the 95% ethanolic extract of the whole plants of D. orientalis. They were identified as palmitic acid, henicosanoic acid, henicosanoic acid methyl ester, β-sitosterol, monogynol, betulinic acid, hederagenin, β-daucosterol, 18αH-urs-20(30)-en-3-one, 3,4-seco-urs-20(30)-en-3-oic acid, pomolic acid, (-)-epicatechin, (+)-catechin, quercetin, quercetin 3-O-β-D-glucopyranoside, syringin, syringiaresinol digloside and kaempferol-3-O-rutinose. (+)-Catechin, quercetin and quercetin 3-O-β-D-glucopyranoside were the ACE inhibitory active components. 3. Further phytochemical investigation of the ethyl acetate parts of 95% ethanolic extract of the whole plant of I. litseaefolia afforded 2-O-β-D-glucopyranose-4,4´-di-vanilloyloxymethyl-2,6´-dihydroxy-1,1´-diphenyl ether (ilexiside), esculetin, vanillic acid, 3,4-dimethoxybenzylacetic acid and vanilloylcalleryanin. Ilexiside was new compound. 4. Nine compounds were isolation from the 95% ethanolic extract of the whole plant of H. japonica: β-sitosterol, β-daucosterol, lupeol, betulin, betulinic acid, glycerol monopalmitate, cinnamic acid, stignast-4-en-6β-3-one and stignast-4-en-6α-3-one 5.Diphenyl ether compounds from nature between 1985-2006 were summarized.