992 resultados para 664.202238
Resumo:
The composition of algal pigments and extracellular polymeric substances (EPS) was determined in microbial mats from two lakes in Victoria Land (Continental Antarctica) with different lithology and environmental features. The aim was to expand knowledge of benthic autotrophic communities in Antarctic lacustrine ecosystems, providing reference data for future assessment of possible changes in environmental conditions and freshwater communities. The results of chemical analyses were supported by microscopy observations. Pigment profiles showed that filamentous cyanobacteria are dominant in both lakes. Samples from the water body at Edmonson Point had greater biodiversity, fewer pigments and lower EPS ratios than those from the lake at Kar Plateau. Differences in mat composition and in pigment and EPS profile between the two lakes are discussed in terms of local environmental conditions such as lithology, ice-cover and UV radiation. The present study suggests that a chemical approach could be useful in the study of benthic communities in Antarctic lakes and their variations in space and time.
Resumo:
Spectral absorption coefficients of total particulate matter ap (lambda) were determined using the in vitro filter technique. The present analysis deals with a set of 1166 spectra, determined in various oceanic (case 1) waters, with field chl a concentrations ([chl]) spanning 3 orders of magnitude (0.02-25 mg/m**3). As previously shown [Bricaud et al., 1995, doi:10.1029/95JC00463] for the absorption coefficients of living phytoplankton a phi (lamda), the ap (labda) coefficients also increase nonlinearly with [chl]. The relationships (power laws) that link ap (lambda) and a phi (lambda) to [chl] show striking similarities. Despite large fluctuations, the relative contribution of nonalgal particles to total absorption oscillates around an average value of 25-30% throughout the [chl] range. The spectral dependence of absorption by these nonalgal particles follows an exponential increase toward short wavelengths, with a weakly variable slope (0.011 ± 0.0025/nm). The empirical relationships linking ap (lambda) to ([chl]) can be used in bio-optical models. This parameterization based on in vitro measurements leads to a good agreement with a former modeling of the diffuse attenuation coefficient based on in situ measurements. This agreement is worth noting as independent methods and data sets are compared. It is stressed that for a given ([chl]), the ap (lambda) coefficients show large residual variability around the regression lines (for instance, by a factor of 3 at 440 nm). The consequences of such a variability, when predicting or interpreting the diffuse reflectance of the ocean, are examined, according to whether or not these variations in ap are associated with concomitant variations in particle scattering. In most situations the deviations in ap actually are not compensated by those in particle scattering, so that the amplitude of reflectance is affected by these variations.