837 resultados para 3D multi-user virtual environments
Resumo:
The explosive growth of Internet during the last years has been reflected in the ever-increasing amount of the diversity and heterogeneity of user preferences, types and features of devices and access networks. Usually the heterogeneity in the context of the users which request Web contents is not taken into account by the servers that deliver them implying that these contents will not always suit their needs. In the particular case of e-learning platforms this issue is especially critical due to the fact that it puts at stake the knowledge acquired by their users. In the following paper we present a system that aims to provide the dotLRN e-learning platform with the capability to adapt to its users context. By integrating dotLRN with a multi-agent hypermedia system, online courses being undertaken by students as well as their learning environment are adapted in real time
Resumo:
S’ha implementat un servei VO (Virtual Observatori) a les instal lacions del Telescopi TFRM, que permet distribuir les imatges preses amb el telescopi de manera remota i automàtica a qualsevol usuari del servei. El servei està format per un arxiu d’imatges, una aplicació que integra les imatges a l'arxiu y una aplicació que es comunica amb els clients d’VO, rebent peticions i responen segons s’especifica al protocol SIAP (Simple Image Access Protocol).
Resumo:
A traditional photonic-force microscope (PFM) results in huge sets of data, which requires tedious numerical analysis. In this paper, we propose instead an analog signal processor to attain real-time capabilities while retaining the richness of the traditional PFM data. Our system is devoted to intracellular measurements and is fully interactive through the use of a haptic joystick. Using our specialized analog hardware along with a dedicated algorithm, we can extract the full 3D stiffness matrix of the optical trap in real time, including the off-diagonal cross-terms. Our system is also capable of simultaneously recording data for subsequent offline analysis. This allows us to check that a good correlation exists between the classical analysis of stiffness and our real-time measurements. We monitor the PFM beads using an optical microscope. The force-feedback mechanism of the haptic joystick helps us in interactively guiding the bead inside living cells and collecting information from its (possibly anisotropic) environment. The instantaneous stiffness measurements are also displayed in real time on a graphical user interface. The whole system has been built and is operational; here we present early results that confirm the consistency of the real-time measurements with offline computations.
Resumo:
The simultaneous use of multiple transmit and receive antennas can unleash very large capacity increases in rich multipath environments. Although such capacities can be approached by layered multi-antenna architectures with per-antenna rate control, the need for short-term feedback arises as a potential impediment, in particular as the number of antennas—and thus the number of rates to be controlled—increases. What we show, however, is that the need for short-term feedback in fact vanishes as the number of antennas and/or the diversity order increases. Specifically, the rate supported by each transmit antenna becomes deterministic and a sole function of the signal-to-noise, the ratio of transmit and receive antennas, and the decoding order, all of which are either fixed or slowly varying. More generally, we illustrate -through this specific derivation— the relevance of some established random CDMA results to the single-user multi-antenna problem.
Resumo:
BACKGROUND: The aim of this study was to assess whether virtual reality (VR) can discriminate between the skills of novices and intermediate-level laparoscopic surgical trainees (construct validity), and whether the simulator assessment correlates with an expert's evaluation of performance. METHODS: Three hundred and seven (307) participants of the 19th-22nd Davos International Gastrointestinal Surgery Workshops performed the clip-and-cut task on the Xitact LS 500 VR simulator (Xitact S.A., Morges, Switzerland). According to their previous experience in laparoscopic surgery, participants were assigned to the basic course (BC) or the intermediate course (IC). Objective performance parameters recorded by the simulator were compared to the standardized assessment by the course instructors during laparoscopic pelvitrainer and conventional surgery exercises. RESULTS: IC participants performed significantly better on the VR simulator than BC participants for the task completion time as well as the economy of movement of the right instrument, not the left instrument. Participants with maximum scores in the pelvitrainer cholecystectomy task performed the VR trial significantly faster, compared to those who scored less. In the conventional surgery task, a significant difference between those who scored the maximum and those who scored less was found not only for task completion time, but also for economy of movement of the right instrument. CONCLUSIONS: VR simulation provides a valid assessment of psychomotor skills and some basic aspects of spatial skills in laparoscopic surgery. Furthermore, VR allows discrimination between trainees with different levels of experience in laparoscopic surgery establishing construct validity for the Xitact LS 500 clip-and-cut task. Virtual reality may become the gold standard to assess and monitor surgical skills in laparoscopic surgery.
Resumo:
OBJECTIVE: To demonstrate the validity and reliability of volumetric quantitative computed tomography (vQCT) with multi-slice computed tomography (MSCT) and dual energy X-ray absorptiometry (DXA) for hip bone mineral density (BMD) measurements, and to compare the differences between the two techniques in discriminating postmenopausal women with osteoporosis-related vertebral fractures from those without. METHODS: Ninety subjects were enrolled and divided into three groups based on the BMD values of the lumbar spine and/or the femoral neck by DXA. Groups 1 and 2 consisted of postmenopausal women with BMD changes <-2SD, with and without radiographically confirmed vertebral fracture (n=11 and 33, respectively). Group 3 comprised normal controls with BMD changes > or =-1SD (n=46). Post-MSCT (GE, LightSpeed16) scan reconstructed images of the abdominal-pelvic region, 1.25 mm thick per slice, were processed by OsteoCAD software to calculate the following parameters: volumetric BMD values of trabecular bone (TRAB), cortical bone (CORT), and integral bone (INTGL) of the left femoral neck, femoral neck axis length (NAL), and minimum cross-section area (mCSA). DXA BMD measurements of the lumbar spine (AP-SPINE) and the left femoral neck (NECK) also were performed for each subject. RESULTS: The values of all seven parameters were significantly lower in subjects of Groups 1 and 2 than in normal postmenopausal women (P<0.05, respectively). Comparing Groups 1 and 2, 3D-TRAB and 3D-INTGL were significantly lower in postmenopausal women with vertebral fracture(s) [(109.8+/-9.61) and (243.3+/-33.0) mg/cm3, respectively] than in those without [(148.9+/-7.47) and (285.4+/-17.8) mg/cm(3), respectively] (P<0.05, respectively), but no significant differences were evident in AP-SPINE or NECK BMD. CONCLUSION: the femoral neck-derived volumetric BMD parameters using vQCT appeared better than the DXA-derived ones in discriminating osteoporotic postmenopausal women with vertebral fractures from those without. vQCT might be useful to evaluate the effect of osteoporotic vertebral fracture status on changes in bone mass in the femoral neck.
Resumo:
El text que es presenta mostra com es du a terme la gestió dels llibres electrònics a la Biblioteca virtual (d'ara endavant BV) de la Universitat Oberta de Catalunya (d'ara endavant UOC). La BV posa un èmfasi especial en l'adquisició de llibres digitals per millorar l'accés als usuaris als recursos i col¿leccions d'una universitat que es caracteritza per la virtualitat. El document presenta, en primer lloc, l'entorn en què s'adquireixen i s'utilitzen els llibres electrònics: s'expliquen els diferents escenaris d'adquisició en els quals es pot trobar la biblioteca i es defineixen els circuits interns que en permeten la gestió i els processos tècnics dels documents. A continuació es mostren les diferents opcions d'accés i consulta de llibres electrònics que actualment s'ofereixen des de la biblioteca i s'expliquen les anàlisis d'usos d'aquests documents. Finalment es presenten les conclusions a les quals arriba la BV sobre el nou context de llibres electrònics.
Resumo:
In order to investigate the spatial and temporal variability (daily, seasonal and inter-annual) of CO2 and O2 air-sea fluxes and their underlying processes, a dense network of observations is required. For this purpose, the Cape Verde Ocean Observatory (CVOO) provides a unique infrastructure. Information thus obtained also links biological productivity and atmospheric composition. To expand these capabilities, a novel “virtual mooring” approach for high resolution measurements, based on a modified NEMO profiling float, is pursued. This Profiling Float was equipped with O2 and pCO2 sensors for the first time, in order to collect daily depth profiles (0-200 m) in the vicinity of the ocean site. Data access and remote control is provided through Iridium satellite telemetry. Recalibrations and redeployments are carried out every 1-3 month. First, we present the new developed instrument and the innovative in situ and real-time approach behind. Second, we show the inter-disciplinary scientific objectives which will benefit from this approach as a result of the intensive partnership between IFM-GEOMAR and INDP during the last years.
3D seismic facies characterization and geological patterns recognition (Australian North West Shelf)
Resumo:
EXECUTIVE SUMMARY This PhD research, funded by the Swiss Sciences Foundation, is principally devoted to enhance the recognition, the visualisation and the characterization of geobodies through innovative 3D seismic approaches. A series of case studies from the Australian North West Shelf ensures the development of reproducible integrated 3D workflows and gives new insight into local and regional stratigraphic as well as structural issues. This project was initiated in year 2000 at the Geology and Palaeontology Institute of the University of Lausanne (Switzerland). Several collaborations ensured the improvement of technical approaches as well as the assessment of geological models. - Investigations into the Timor Sea structural style were carried out at the Tectonics Special Research Centre of the University of Western Australia and in collaboration with Woodside Energy in Perth. - Seismic analysis and attributes classification approach were initiated with Schlumberger Oilfield Australia in Perth; assessments and enhancements of the integrated seismic approaches benefited from collaborations with scientists from Schlumberger Stavanger Research (Norway). Adapting and refining from "linear" exploration techniques, a conceptual "helical" 3D seismic approach has been developed. In order to investigate specific geological issues this approach, integrating seismic attributes and visualisation tools, has been refined and adjusted leading to the development of two specific workflows: - A stratigraphic workflow focused on the recognition of geobodies and the characterization of depositional systems. Additionally, it can support the modelling of the subsidence and incidentally the constraint of the hydrocarbon maturity of a given area. - A structural workflow used to quickly and accurately define major and secondary fault systems. The integration of the 3D structural interpretation results ensures the analysis of the fault networks kinematics which can affect hydrocarbon trapping mechanisms. The application of these integrated workflows brings new insight into two complex settings on the Australian North West Shelf and ensures the definition of astonishing stratigraphic and structural outcomes. The stratigraphic workflow ensures the 3D characterization of the Late Palaeozoic glacial depositional system on the Mermaid Nose (Dampier Subbasin, Northern Carnarvon Basin) that presents similarities with the glacial facies along the Neotethys margin up to Oman (chapter 3.1). A subsidence model reveals the Phanerozoic geodynamic evolution of this area (chapter 3.2) and emphasizes two distinct mode of regional extension for the Palaeozoic (Neotethys opening) and Mesozoic (abyssal plains opening). The structural workflow is used for the definition of the structural evolution of the Laminaria High area (Bonaparte Basin). Following a regional structural characterization of the Timor Sea (chapter 4.1), a thorough analysis of the Mesozoic fault architecture reveals a local rotation of the stress field and the development of reverse structures (flower structures) in extensional setting, that form potential hydrocarbon traps (chapter 4.2). The definition of the complex Neogene structural architecture associated with the fault kinematic analysis and a plate flexure model (chapter 4.3) suggest that the Miocene to Pleistocene reactivation phases recorded at the Laminaria High most probably result from the oblique normal reactivation of the underlying Mesozoic fault planes. This episode is associated with the deformation of the subducting Australian plate. Based on these results three papers were published in international journals and two additional publications will be submitted. Additionally this research led to several communications in international conferences. Although the different workflows presented in this research have been primarily developed and used for the analysis of specific stratigraphic and structural geobodies on the Australian North West Shelf, similar integrated 3D seismic approaches will have applications to hydrocarbon exploration and production phases; for instance increasing the recognition of potential source rocks, secondary migration pathways, additional traps or reservoir breaching mechanisms. The new elements brought by this research further highlight that 3D seismic data contains a tremendous amount of hidden geological information waiting to be revealed and that will undoubtedly bring new insight into depositional systems, structural evolution and geohistory of the areas reputed being explored and constrained and other yet to be constrained. The further development of 3D texture attributes highlighting specific features of the seismic signal, the integration of quantitative analysis for stratigraphic and structural processes, the automation of the interpretation workflow as well as the formal definition of "seismo-morphologic" characteristics of a wide range of geobodies from various environments would represent challenging examples of continuation of this present research. The 21st century will most probably represent a transition period between fossil and other alternative energies. The next generation of seismic interpreters prospecting for hydrocarbon will undoubtedly face new challenges mostly due to the shortage of obvious and easy targets. They will probably have to keep on integrating techniques and geological processes in order to further capitalise the seismic data for new potentials definition. Imagination and creativity will most certainly be among the most important quality required from such geoscientists.
Resumo:
A high-resolution three-dimensional (3D) seismic reflection system for small-scale targets in lacustrine settings has been developed. Its main characteristics include navigation and shot-triggering software that fires the seismic source at regular distance intervals (max. error of 0.25 m) with real-time control on navigation using differential GPS (Global Positioning System). Receiver positions are accurately calculated (error < 0.20 m) with the aid of GPS antennas attached to the end of each of three 24-channel streamers. Two telescopic booms hold the streamers at a distance of 7.5 m from each other. With a receiver spacing of 2.5 m, the bin dimension is 1.25 m in inline and 3.75 m in crossline direction. To test the system, we conducted a 3D survey of about 1 km(2) in Lake Geneva, Switzerland, over a complex fault zone. A 5-m shot spacing resulted in a nominal fold of 6. A double-chamber bubble-cancelling 15/15 in(3) air gun (40-650 Hz) operated at 80 bars and 1 m depth gave a signal penetration of 300 m below water bottom and a best vertical resolution of 1.1 m. Processing followed a conventional scheme, but had to be adapted to the high sampling rates, and our unconventional navigation data needed conversion to industry standards. The high-quality data enabled us to construct maps of seismic horizons and fault surfaces in three dimensions. The system proves to be well adapted to investigate complex structures by providing non-aliased images of reflectors with dips up to 30 degrees.
Resumo:
This study aims to design a wearable system for kinetics measurement of multi-segment foot joints in long-distance walking and to investigate its suitability for clinical evaluations. The wearable system consisted of inertial sensors (3D gyroscopes and 3D accelerometers) on toes, forefoot, hindfoot, and shank, and a plantar pressure insole. After calibration in a laboratory, 10 healthy elderly subjects and 12 patients with ankle osteoarthritis walked 50m twice wearing this system. Using inverse dynamics, 3D forces, moments, and power were calculated in the joint sections among toes, forefoot, hindfoot, and shank. Compared to those we previously estimated for a one-segment foot model, the sagittal and transverse moments and power in the ankle joint, as measured via multi-segment foot model, showed a normalized RMS difference of less than 11%, 14%, and 13%, respectively, for healthy subjects, and 13%, 15%, and 14%, for patients. Similar to our previous study, the coronal moments were not analyzed. Maxima-minima values of anterior-posterior and vertical force, sagittal moment, and power in shank-hindfoot and hindfoot-forefoot joints were significantly different between patients and healthy subjects. Except for power, the inter-subject repeatability of these parameters was CMC>0.90 for healthy subjects and CMC>0.70 for patients. Repeatability of these parameters was lower for the forefoot-toes joint. The proposed measurement system estimated multi-segment foot joints kinetics with acceptable repeatability but showed difference, compared to those previously estimated for the one-segment foot model. These parameters also could distinguish patients from healthy subjects. Thus, this system is suggested for outcome evaluations of foot treatments.
Resumo:
The use of virtual learning environments it’s more and more frequent in all education levels. However, this increasing use of such environments also implies that the different stages now used in the processes of teaching-learning need to be considered. Student users in a virtual learning environment are faced, not only to the problems related to acquire the knowledge of their course, but also to technological problems as information overloading, getting used to web surfing, computer use, etc. One way to minimize the impact caused by heterogeneity existing in virtual learning environments is to adapt several aspects to the specific characteristics from the user and his context. From this point of view, this work shows a model for an integral user that has been used to generate a virtual course that can interoperate between ELearning platforms. This course has been created using the SCORM reference model and the IMSLD specification
Resumo:
P130 A HIGH-RESOLUTION 2D/3D SEISMIC STUDY OF A THRUST FAULT ZONE IN LAKE GENEVA SWITZERLAND M. SCHEIDHAUER M. BERES D. DUPUY and F. MARILLIER Institute of Geophysics University of Lausanne 1015 Lausanne, Switzerland Summary A high-resolution three-dimensional (3D) seismic reflection survey has been conducted in Lake Geneva near the city of Lausanne Switzerland where the faulted molasse basement (Tertiary sandstones) is overlain by complex Quaternary sedimentary structures. Using a single 48-channel streamer an area of 1200 m x 600 m was surveyed in 10 days. With a 5-m shot spacing and a receiver spacing of 2.5 m in the inline direction and 7.5 m in the crossline direction, a 12-fold data coverage was achieved. A maximum penetration depth of ~150 m was achieved with a 15 cu. in. water gun operated at 140 bars. The multi-channel data allow the determination of an accurate velocity field for 3D processing, and they show particularly clean images of the fault zone and the overlying sediments in horizontal and vertical sections. In order to compare different sources, inline 55 was repeated with a 30/30 and a 15/15 cu. in. double-chamber air gun (Mini GI) operated at 100 and 80 bars, respectively. A maximum penetration depth of ~450 m was achieved with this source.