943 resultados para 3D motion capture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most sedimentary modelling programs developed in recent years focus on either terrigenous or carbonate marine sedimentation. Nevertheless, only a few programs have attempted to consider mixed terrigenous-carbonate sedimentation, and most of these are two-dimensional, which is a major restriction since geological processes take place in 3D. This paper presents the basic concepts of a new 3D mathematical forward simulation model for clastic sediments, which was developed from SIMSAFADIM, a previous 3D carbonate sedimentation model. The new extended model, SIMSAFADIM-CLASTIC, simulates processes of autochthonous marine carbonate production and accumulation, together with clastic transport and sedimentation in three dimensions of both carbonate and terrigenous sediments. Other models and modelling strategies may also provide realistic and efficient tools for prediction of stratigraphic architecture and facies distribution of sedimentary deposits. However, SIMSAFADIM-CLASTIC becomes an innovative model that attempts to simulate different sediment types using a process-based approach, therefore being a useful tool for 3D prediction of stratigraphic architecture and facies distribution in sedimentary basins. This model is applied to the neogene Vallès-Penedès half-graben (western Mediterranean, NE Spain) to show the capacity of the program when applied to a realistic geologic situation involving interactions between terrigenous clastics and carbonate sediments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sophisticated magnetic resonance tagging techniques provide powerful tools for the non-invasive assessment of the local heartwall motion towards a deeper fundamental understanding of local heart function. For the extraction of motion data from the time series of magnetic resonance tagged images and for the visualization of the local heartwall motion a new image analysis procedure has been developed. New parameters have been derived which allows quantification of the motion patterns and are highly sensitive to any changes in these patterns. The new procedure has been applied for heart motion analysis in healthy volunteers and in patient collectives with different heart diseases. The achieved results are summarized and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spiral chemical waves subjected to a spatiotemporal random excitability are experimentally and numerically investigated in relation to the light-sensitive Belousov-Zhabotinsky reaction. Brownian motion is identified and characterized by an effective diffusion coefficient which shows a rather complex dependence on the time and length scales of the noise relative to those of the spiral. A kinematically based model is proposed whose results are in good qualitative agreement with experiments and numerics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Games are powerful and engaging. On average, one billion people spend at least 1 hour a day playing computer and videogames. This is even more true with the younger generations. Our students have become the < digital natives >, the < gamers >, the < virtual generation >. Research shows that those who are most at risk for failure in the traditional classroom setting, also spend more time than their counterparts, using video games. They might strive, given a different learning environment. Educators have the responsibility to align their teaching style to these younger generation learning styles. However, many academics resist the use of computer-assisted learning that has been "created elsewhere". This can be extrapolated to game-based teaching: even if educational games were more widely authored, their adoption would still be limited to the educators who feel a match between the authored games and their own beliefs and practices. Consequently, game-based teaching would be much more widespread if teachers could develop their own games, or at least customize them. Yet, the development and customization of teaching games are complex and costly. This research uses a design science methodology, leveraging gamification techniques, active and cooperative learning theories, as well as immersive sandbox 3D virtual worlds, to develop a method which allows management instructors to transform any off-the-shelf case study into an engaging collaborative gamified experience. This method is applied to marketing case studies, and uses the sandbox virtual world of Second Life. -- Les jeux sont puissants et motivants, En moyenne, un milliard de personnes passent au moins 1 heure par jour jouer à des jeux vidéo sur ordinateur. Ceci se vérifie encore plus avec les jeunes générations, Nos étudiants sont nés à l'ère du numérique, certains les appellent des < gamers >, d'autres la < génération virtuelle >. Les études montrent que les élèves qui se trouvent en échec scolaire dans les salles de classes traditionnelles, passent aussi plus de temps que leurs homologues à jouer à des jeux vidéo. lls pourraient potentiellement briller, si on leur proposait un autre environnement d'apprentissage. Les enseignants ont la responsabilité d'adapter leur style d'enseignement aux styles d'apprentissage de ces jeunes générations. Toutefois, de nombreux professeurs résistent lorsqu'il s'agit d'utiliser des contenus d'apprentissage assisté par ordinateur, développés par d'autres. Ceci peut être extrapolé à l'enseignement par les jeux : même si un plus grand nombre de jeux éducatifs était créé, leur adoption se limiterait tout de même aux éducateurs qui perçoivent une bonne adéquation entre ces jeux et leurs propres convictions et pratiques. Par conséquent, I'enseignement par les jeux serait bien plus répandu si les enseignants pouvaient développer leurs propres jeux, ou au moins les customiser. Mais le développement de jeux pédagogiques est complexe et coûteux. Cette recherche utilise une méthodologie Design Science pour développer, en s'appuyant sur des techniques de ludification, sur les théories de pédagogie active et d'apprentissage coopératif, ainsi que sur les mondes virtuels immersifs < bac à sable > en 3D, une méthode qui permet aux enseignants et formateurs de management, de transformer n'importe quelle étude de cas, provenant par exemple d'une centrale de cas, en une expérience ludique, collaborative et motivante. Cette méthode est appliquée aux études de cas Marketing dans le monde virtuel de Second Life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical study of Brownian motion of noninteracting particles in random potentials is presented. The dynamics are modeled by Langevin equations in the high friction limit. The random potentials are Gaussian distributed and short ranged. The simulations are performed in one and two dimensions. Different dynamical regimes are found and explained. Effective subdiffusive exponents are obtained and commented on.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide analytical evidence of stochastic resonance in polarization switching vertical-cavity surface-emitting lasers (VCSELs). We describe the VCSEL by a two-mode stochastic rate equation model and apply a multiple time-scale analysis. We were able to reduce the dynamical description to a single stochastic differential equation, which is the starting point of the analytical study of stochastic resonance. We confront our results with numerical simulations on the original rate equations, validating the use of a multiple time-scale analysis on stochastic equations as an analytical tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Several methods have already been proposed to improve the mobility of reversed prostheses (lateral or inferior displacement, increase of the glenosphere size). However, the effect of these design changes have only been evaluated on the maximal range of motion and were not related to activities of daily living (ADL). Our aim was thus to measure the effect of these design changes and to relate it to 4 typical ADL. Methods: CT data were used to reconstruct a accurate geometric model of the scapula and humerus. The Aequalis reversed prosthesis (Tornier) was used. The mobility of a healthy shoulder was compared to the mobility of 4 different reversed designs: 36 and 42 mm glenospheres diameters, inferior (4 mm) and lateral (3.2 mm) glenospheres displacements. The complete mobility map of the prosthesis was compared to kinematics measurement on healthy subjects for 4 ADL: 1) hand to contra lateral shoulder, 2) hand to mouth, 3) combing hair, 4) hand to back pocket. The results are presented as percentage of the allowed movement of the prosthestic shouder relative to the healthy shoulder, considered as the control group. Results: None of the tested designs allowed to recover a full mobility. The differences of allowed range of motion among each prosthetic designs appeared mainly in two of the 4 movements: hand to back pocket and hand to contra lateral shoulder. For the hand to back pocket, the 36 had the lowest mobility range, particularly for the last third of the movement. The 42 appeared to be a good compromise for all ADL activities. Conclusion: Reverse shoulder prostheses does not allow to recover a full range of motion compared to healthy shoulders, even for ADL. The present study allowed to obtain a complete 3D mobility map for several glenosphere positions and sizes, and to relate it to typical ADL. We mainly observed an improved mobility with inferior displacement and increased glenosphere size. We would suggest to use larger glenosphere, whenever it is possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TCRep 3D is an automated systematic approach for TCR-peptide-MHC class I structure prediction, based on homology and ab initio modeling. It has been considerably generalized from former studies to be applicable to large repertoires of TCR. First, the location of the complementary determining regions of the target sequences are automatically identified by a sequence alignment strategy against a database of TCR Vα and Vβ chains. A structure-based alignment ensures automated identification of CDR3 loops. The CDR are then modeled in the environment of the complex, in an ab initio approach based on a simulated annealing protocol. During this step, dihedral restraints are applied to drive the CDR1 and CDR2 loops towards their canonical conformations, described by Al-Lazikani et. al. We developed a new automated algorithm that determines additional restraints to iteratively converge towards TCR conformations making frequent hydrogen bonds with the pMHC. We demonstrated that our approach outperforms popular scoring methods (Anolea, Dope and Modeller) in predicting relevant CDR conformations. Finally, this modeling approach has been successfully applied to experimentally determined sequences of TCR that recognize the NY-ESO-1 cancer testis antigen. This analysis revealed a mechanism of selection of TCR through the presence of a single conserved amino acid in all CDR3β sequences. The important structural modifications predicted in silico and the associated dramatic loss of experimental binding affinity upon mutation of this amino acid show the good correspondence between the predicted structures and their biological activities. To our knowledge, this is the first systematic approach that was developed for large TCR repertoire structural modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensional (2D)-breath-hold coronary magnetic resonance angiography (MRA) has been shown to be a fast and reliable method to depict the proximal coronary arteries. Recent developments, however, allow for free-breathing navigator gated and navigator corrected three-dimensional (3D) coronary MRA. These 3D approaches have potential for improved signal-to-noise ratio (SNR) and allow for the acquisition of adjacent thin slices without the misregistration problems known from 2D approaches. Still, a major impediment of a 3D acquisition is the increased scan time. The purpose of this study was the implementation of a free-breathing navigator gated and corrected ultra-fast 3D coronary MRA technique, which allows for scan times of less than 5 minutes. Twelve healthy adult subjects were examined in the supine position using a navigator gated and corrected ECG triggered ultra-fast 3D interleaved gradient echo planar imaging sequence (TFE-EPI). A 3D slab, consisting of 20 slices with a reconstructed slice thickness of 1.5 mm, was acquired with free-breathing. The diastolic TFE-EPI acquisition block was preceded by a T2prep pre-pulse, a diaphragmatic navigator pulse, and a fat suppression pre-pulse. With a TR of 19 ms and an effective TE of 5.4 ms, the duration of the data acquisition window duration was 38 ms. The in-plane spatial resolution was 1.0-1.3 mm*1.5-1.9 mm. In all cases, the entire left main (LM) and extensive portions of the left anterior descending (LAD) and right coronary artery (RCA) could be visualized with an average scan time for the entire 3D-volume data set of 2:57 +/- 0:51 minutes. Average contiguous vessel length visualized was 53 +/- 11 mm (range: 42 to 75 mm) for the LAD and 84 +/- 14 mm (range: 62 to 112 mm) for the RCA. Contrast-to-noise between coronary blood and myocardium was 5.0 +/- 2.3 for the LM/LAD and 8.0 +/- 2.9 for the RCA, resulting in an excellent suppression of myocardium. We present a new approach for free-breathing 3D coronary MRA, which allows for scan times superior to corresponding 2D coronary MRA approaches, and which takes advantage of the enhanced SNR of 3D acquisitions and the post-processing benefits of thin adjacent slices. The robust image quality and the short average scanning time suggest that this approach may be useful for screening the major coronary arteries or identification of anomalous coronary arteries. J. Magn. Reson. Imaging 1999;10:821-825.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Whole pelvis intensity modulated radiotherapy (IMRT) is increasingly being used to treat cervical cancer aiming to reduce side effects. Encouraged by this, some groups have proposed the use of simultaneous integrated boost (SIB) to target the tumor, either to get a higher tumoricidal effect or to replace brachytherapy. Nevertheless, physiological organ movement and rapid tumor regression throughout treatment might substantially reduce any benefit of this approach. PURPOSE: To evaluate the clinical target volume - simultaneous integrated boost (CTV-SIB) regression and motion during chemo-radiotherapy (CRT) for cervical cancer, and to monitor treatment progress dosimetrically and volumetrically to ensure treatment goals are met. METHODS AND MATERIALS: Ten patients treated with standard doses of CRT and brachytherapy were retrospectively re-planned using a helical Tomotherapy - SIB technique for the hypothetical scenario of this feasibility study. Target and organs at risk (OAR) were contoured on deformable fused planning-computed tomography and megavoltage computed tomography images. The CTV-SIB volume regression was determined. The center of mass (CM) was used to evaluate the degree of motion. The Dice's similarity coefficient (DSC) was used to assess the spatial overlap of CTV-SIBs between scans. A cumulative dose-volume histogram modeled estimated delivered doses. RESULTS: The CTV-SIB relative reduction was between 31 and 70%. The mean maximum CM change was 12.5, 9, and 3 mm in the superior-inferior, antero-posterior, and right-left dimensions, respectively. The CTV-SIB-DSC approached 1 in the first week of treatment, indicating almost perfect overlap. CTV-SIB-DSC regressed linearly during therapy, and by the end of treatment was 0.5, indicating 50% discordance. Two patients received less than 95% of the prescribed dose. Much higher doses to the OAR were observed. A multiple regression analysis showed a significant interaction between CTV-SIB reduction and OAR dose increase. CONCLUSIONS: The CTV-SIB had important regression and motion during CRT, receiving lower therapeutic doses than expected. The OAR had unpredictable shifts and received higher doses. The use of SIB without frequent adaptation of the treatment plan exposes cervical cancer patients to an unpredictable risk of under-dosing the target and/or overdosing adjacent critical structures. In that scenario, brachytherapy continues to be the gold standard approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To compare the performance Glaucoma Quality of Life-15 (GQL-15) Questionnaire, intraocular pressure measurement (IOP Goldmann tonometry) and a measure of visual field loss using Moorfields Motion Displacement Test (MDT) in detecting glaucomatous eyes from a self referred population. Methods: The GQL-15 has been suggested to correlate with visual disability and psychophysical measures of visual function in glaucoma patients. The Moorfields MDT is a multi location perimetry test with 32 white line stimuli presented on a grey background on a standard laptop computer. Each stimulus is displaced between computer frames to give the illusion of "apparent motion". Participants (N=312, 90% older than 45 years; 20.5% family history of glaucoma) self referred to an advertised World Glaucoma Day (March 2009) Jules Gonin Eye Hospital, Lausanne Switzerland. Participants underwent a clinical exam (IOP, slit lamp, angle and disc examination by a general ophthalmologist), 90% completed a GQL-15 questionnaire and over 50% completed a MDT test in both eyes. Those who were classified as abnormal on one or more of the following (IOP >21 mmHg/ GQL-15 score >20/ MDT score >2/ clinical exam) underwent a follow up clinical examination by a glaucoma specialist including imaging and threshold perimetry. After the second examination subjects were classified as "healthy"(H), "glaucoma suspect" (GS) (ocular hypertension and/or suspicious disc, angle closure with SD) or "glaucomatous" (G). Results: One hundred and ten subjects completed all 4 initial examinations; of these 69 were referred to complete the 2nd examination and were classified as; 8 G, 24 GS, and 37 H. MDT detected 7/8 G, and 7/24 GS, with false referral rate of 3.8%. IOP detected 2/8 G and 8/24 GS, with false referral rate of 8.9%. GQL-15 detected 4/8 G, 16/24 GS with a false referral rate of 42%. Conclusions: In this sample of participants attending a self referral glaucoma detection event, the MDT performed significantly better than the GQL-15 and IOP in discriminating glaucomatous patients from healthy subjects. Further studies are required to assess the potential of the MDT as a glaucoma screening tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Lorentz-Dirac equation is not an unavoidable consequence of solely linear and angular momenta conservation for a point charge. It also requires an additional assumption concerning the elementary character of the charge. We here use a less restrictive elementarity assumption for a spinless charge and derive a system of conservation equations that are not properly the equation of motion because, as it contains an extra scalar variable, the future evolution of the charge is not determined. We show that a supplementary constitutive relation can be added so that the motion is determined and free from the troubles that are customary in the Lorentz-Dirac equation, i.e., preacceleration and runaways.