1000 resultados para 3D Petrography
Resumo:
Model-based object recognition commonly involves using a minimal set of matched model and image points to compute the pose of the model in image coordinates. Furthermore, recognition systems often rely on the "weak-perspective" imaging model in place of the perspective imaging model. This paper discusses computing the pose of a model from three corresponding points under weak-perspective projection. A new solution to the problem is proposed which, like previous solutins, involves solving a biquadratic equation. Here the biquadratic is motivate geometrically and its solutions, comprised of an actual and a false solution, are interpreted graphically. The final equations take a new form, which lead to a simple expression for the image position of any unmatched model point.
Resumo:
This paper describes the main features of a view-based model of object recognition. The model tries to capture general properties to be expected in a biological architecture for object recognition. The basic module is a regularization network in which each of the hidden units is broadly tuned to a specific view of the object to be recognized.
Resumo:
We propose an affine framework for perspective views, captured by a single extremely simple equation based on a viewer-centered invariant we call "relative affine structure". Via a number of corollaries of our main results we show that our framework unifies previous work --- including Euclidean, projective and affine --- in a natural and simple way, and introduces new, extremely simple, algorithms for the tasks of reconstruction from multiple views, recognition by alignment, and certain image coding applications.
Resumo:
We present an image-based approach to infer 3D structure parameters using a probabilistic "shape+structure'' model. The 3D shape of a class of objects may be represented by sets of contours from silhouette views simultaneously observed from multiple calibrated cameras. Bayesian reconstructions of new shapes can then be estimated using a prior density constructed with a mixture model and probabilistic principal components analysis. We augment the shape model to incorporate structural features of interest; novel examples with missing structure parameters may then be reconstructed to obtain estimates of these parameters. Model matching and parameter inference are done entirely in the image domain and require no explicit 3D construction. Our shape model enables accurate estimation of structure despite segmentation errors or missing views in the input silhouettes, and works even with only a single input view. Using a dataset of thousands of pedestrian images generated from a synthetic model, we can perform accurate inference of the 3D locations of 19 joints on the body based on observed silhouette contours from real images.
Resumo:
Recovering a volumetric model of a person, car, or other object of interest from a single snapshot would be useful for many computer graphics applications. 3D model estimation in general is hard, and currently requires active sensors, multiple views, or integration over time. For a known object class, however, 3D shape can be successfully inferred from a single snapshot. We present a method for generating a ``virtual visual hull''-- an estimate of the 3D shape of an object from a known class, given a single silhouette observed from an unknown viewpoint. For a given class, a large database of multi-view silhouette examples from calibrated, though possibly varied, camera rigs are collected. To infer a novel single view input silhouette's virtual visual hull, we search for 3D shapes in the database which are most consistent with the observed contour. The input is matched to component single views of the multi-view training examples. A set of viewpoint-aligned virtual views are generated from the visual hulls corresponding to these examples. The 3D shape estimate for the input is then found by interpolating between the contours of these aligned views. When the underlying shape is ambiguous given a single view silhouette, we produce multiple visual hull hypotheses; if a sequence of input images is available, a dynamic programming approach is applied to find the maximum likelihood path through the feasible hypotheses over time. We show results of our algorithm on real and synthetic images of people.
Resumo:
Alignment is a prevalent approach for recognizing 3D objects in 2D images. A major problem with current implementations is how to robustly handle errors that propagate from uncertainties in the locations of image features. This thesis gives a technique for bounding these errors. The technique makes use of a new solution to the problem of recovering 3D pose from three matching point pairs under weak-perspective projection. Furthermore, the error bounds are used to demonstrate that using line segments for features instead of points significantly reduces the false positive rate, to the extent that alignment can remain reliable even in cluttered scenes.
Resumo:
Análise, de forma visual, de como algumas grandezas físico-químico estão presentes na interface proteica. A proteína é mostrada em 3 dimensões(3D). Cada região da cadeia proteic é colorida com uma cor diferente, representando a variaçao de características físico-químicas na cadeia
Análise do grau de conservação de resíduos em proteínas com estrutura 3D resolvida utilizando o SMS.
Resumo:
HSSP e entropia relativa. Módulos do SMS para análise de conservação. Discussão e trabalhos futuros.
Resumo:
Brown D. S. and Priest E. R. 2001, The topological behaviour of 3D null points in the Sun's corona, Astronomy and Astrophysics, 367, 339-346
Resumo:
Morgan, H.; Habbal, S. R., An empirical 3D model of the large-scale coronal structure based on the distribution of H? filaments on the solar disk, Astronomy and Astrophysics, Volume 464, Issue 1, March II 2007, pp.357-365
Resumo:
Liu, Yonghuai. Automatic 3d free form shape matching using the graduated assignment algorithm. Pattern Recognition, vol. 38, no. 10, pp. 1615-1631, 2005.
Resumo:
A method is proposed that can generate a ranked list of plausible three-dimensional hand configurations that best match an input image. Hand pose estimation is formulated as an image database indexing problem, where the closest matches for an input hand image are retrieved from a large database of synthetic hand images. In contrast to previous approaches, the system can function in the presence of clutter, thanks to two novel clutter-tolerant indexing methods. First, a computationally efficient approximation of the image-to-model chamfer distance is obtained by embedding binary edge images into a high-dimensional Euclide an space. Second, a general-purpose, probabilistic line matching method identifies those line segment correspondences between model and input images that are the least likely to have occurred by chance. The performance of this clutter-tolerant approach is demonstrated in quantitative experiments with hundreds of real hand images.
Resumo:
Estimation of 3D hand pose is useful in many gesture recognition applications, ranging from human-computer interaction to automated recognition of sign languages. In this paper, 3D hand pose estimation is treated as a database indexing problem. Given an input image of a hand, the most similar images in a large database of hand images are retrieved. The hand pose parameters of the retrieved images are used as estimates for the hand pose in the input image. Lipschitz embeddings of edge images into a Euclidean space are used to improve the efficiency of database retrieval. In order to achieve interactive retrieval times, similarity queries are initially performed in this Euclidean space. The paper describes ongoing work that focuses on how to best choose reference images, in order to improve retrieval accuracy.
Resumo:
Scene flow methods estimate the three-dimensional motion field for points in the world, using multi-camera video data. Such methods combine multi-view reconstruction with motion estimation approaches. This paper describes an alternative formulation for dense scene flow estimation that provides convincing results using only two cameras by fusing stereo and optical flow estimation into a single coherent framework. To handle the aperture problems inherent in the estimation task, a multi-scale method along with a novel adaptive smoothing technique is used to gain a regularized solution. This combined approach both preserves discontinuities and prevents over-regularization-two problems commonly associated with basic multi-scale approaches. Internally, the framework generates probability distributions for optical flow and disparity. Taking into account the uncertainty in the intermediate stages allows for more reliable estimation of the 3D scene flow than standard stereo and optical flow methods allow. Experiments with synthetic and real test data demonstrate the effectiveness of the approach.