744 resultados para 380305 Knowledge Representation and Machine Learning
Resumo:
This paper examines the evolution of knowledge management from the initial knowledge migration stage, through adaptation and creation, to the reverse knowledge migration stage in international joint ventures (IJVs). While many studies have analyzed these stages (mostly focusing on knowledge transfer), we investigated the path-dependent nature of knowledge flow in IJVs. The results from the empirical analysis based on a survey of 136 Korean parent companies of IJVs reveal that knowledge management in IJVs follows a sequential, multi-stage process, and that the knowledge transferred from parents to IJVs must first be adapted within its new environment before it reaches the creation stage. We also found that only created knowledge is transferred back to parents.
Resumo:
European researchers across heterogeneous disciplines voice concerns and argue for new paths towards a brighter future regarding scientific and knowledge creation and communication. Recently, in biological and natural sciences concerns have been expressed that major threats are intentionally ignored. These threats are challenging Europe’s future sustainability towards creating knowledge that effectively deals with emerging social, environmental, health, and economic problems of a planetary scope. Within social science circles however, the root cause regarding the above challenges, have been linked with macro level forces of neo-liberal ways of valuing and relevant rules in academia and beyond which we take for granted. These concerns raised by heterogeneous scholars in natural and the applied social sciences concern the ethics of today’s research and academic integrity. Applying Bourdieu’s sociology may not allow an optimistic lens if change is possible. Rather than attributing the replication of neo-liberal habitus in intentional agent and institutional choices, Bourdieu’s work raises the importance of thoughtlessly internalised habits in human and social action. Accordingly, most action within a given paradigm (in this case, neo-liberalism) is understood as habituated, i.e. unconsciously reproducing external social fields, even ill-defined ways of valuing. This essay analyses these and how they may help critically analyse the current habitus surrounding research and knowledge production, evaluation, and communication and related aspects of academic freedom. Although it is acknowledged that transformation is not easy, the essay presents arguments and recent theory paths to suggest that change nevertheless may be a realistic hope once certain action logics are encouraged.
Resumo:
Social network has gained remarkable attention in the last decade. Accessing social network sites such as Twitter, Facebook LinkedIn and Google+ through the internet and the web 2.0 technologies has become more affordable. People are becoming more interested in and relying on social network for information, news and opinion of other users on diverse subject matters. The heavy reliance on social network sites causes them to generate massive data characterised by three computational issues namely; size, noise and dynamism. These issues often make social network data very complex to analyse manually, resulting in the pertinent use of computational means of analysing them. Data mining provides a wide range of techniques for detecting useful knowledge from massive datasets like trends, patterns and rules [44]. Data mining techniques are used for information retrieval, statistical modelling and machine learning. These techniques employ data pre-processing, data analysis, and data interpretation processes in the course of data analysis. This survey discusses different data mining techniques used in mining diverse aspects of the social network over decades going from the historical techniques to the up-to-date models, including our novel technique named TRCM. All the techniques covered in this survey are listed in the Table.1 including the tools employed as well as names of their authors.
Resumo:
People vary in the extent to which they prefer cooperative, competitive or individualistic achievement tasks. In the present research, we conducted two studies designed to investigate correlates and possible roots of these social interdependence orientations, namely approach and avoidance temperament, general self-efficacy, implicit theories of intelligence, and contingencies of self-worth based in others’ approval, competition, and academic competence. The results indicated that approach temperament, general self-efficacy, and incremental theory were positively, and entity theory was negatively related to cooperative preferences (|r| range from .11 to .41); approach temperament, general self-efficacy, competition contingencies, and academic competence contingencies were positively related to competitive preferences (|r| range from .16 to .46); and avoidance temperament, entity theory, competitive contingencies, and academic competence contingencies were positively related, and incremental theory was negatively related to individualistic preferences (|r| range from .09 to .15). The findings are discussed with regard to the meaning of each of the three social interdependence orientations, cultural differences among the observed relations, and implications for practicioners.
Resumo:
Why has the extreme right Greek Golden Dawn, a party with clear links to fascism experienced a rise defying all theories that claim that such a party is unlikely to win in post-WWII Europe? And, if we accept that economic crisis is an explanation for this, why has such a phenomenon not occurred in other countries that have similar conducive conditions, such as Portugal and Spain? This article addresses this puzzle by (a) carrying out a controlled comparison of Greece, Portugal and Spain and (b) showing that the rise of the extreme right is not a question of intensity of economic crisis. Rather it is the nature of the crisis, i.e. economic versus overall crisis of democratic representation that facilitates the rise of the extreme right. We argue that extreme right parties are more likely to experience an increase in their support when economic crisis culminates into an overall crisis of democratic representation. Economic crisis is likely to become a political crisis when severe issues of governability impact upon the ability of the state to fulfil its social contract obligations. This breach of the social contract is accompanied by declining levels of trust in state institutions, resulting in party system collapse.
Resumo:
This paper reports on exploratory work investigating how children with severe and profound learning difficulties register an awareness of small quantities and how they might use this information to inform their understanding. It draws on studies of typically developing children and investigates their application to pupils whose response to conventional mathematical tasks are often limited because they lack relevance and interest. The responses of the three pupils to individualized learning contexts mirror the progression suggested in the literature, namely from awareness of number to simple actions using number cues to problem-solving behaviour
Resumo:
The present paper highlights some of the issues involved in interpreting the communication behaviours of people with profound and multiple learning difficulties (PMLDs). Both inference and intention can play an important role in the communication process, and this raises a number of difficulties and dangers where one of the communication partners is not in a position to correct misunderstandings. The present authors discuss the importance of validating communication and pose a number of key questions to ask those who are most significant in the life of a person with PMLDs. A case study is provided that illustrates a number of these issues.
Resumo:
Background Major Depressive Disorder (MDD) is among the most prevalent and disabling medical conditions worldwide. Identification of clinical and biological markers (“biomarkers”) of treatment response could personalize clinical decisions and lead to better outcomes. This paper describes the aims, design, and methods of a discovery study of biomarkers in antidepressant treatment response, conducted by the Canadian Biomarker Integration Network in Depression (CAN-BIND). The CAN-BIND research program investigates and identifies biomarkers that help to predict outcomes in patients with MDD treated with antidepressant medication. The primary objective of this initial study (known as CAN-BIND-1) is to identify individual and integrated neuroimaging, electrophysiological, molecular, and clinical predictors of response to sequential antidepressant monotherapy and adjunctive therapy in MDD. Methods CAN-BIND-1 is a multisite initiative involving 6 academic health centres working collaboratively with other universities and research centres. In the 16-week protocol, patients with MDD are treated with a first-line antidepressant (escitalopram 10–20 mg/d) that, if clinically warranted after eight weeks, is augmented with an evidence-based, add-on medication (aripiprazole 2–10 mg/d). Comprehensive datasets are obtained using clinical rating scales; behavioural, dimensional, and functioning/quality of life measures; neurocognitive testing; genomic, genetic, and proteomic profiling from blood samples; combined structural and functional magnetic resonance imaging; and electroencephalography. De-identified data from all sites are aggregated within a secure neuroinformatics platform for data integration, management, storage, and analyses. Statistical analyses will include multivariate and machine-learning techniques to identify predictors, moderators, and mediators of treatment response. Discussion From June 2013 to February 2015, a cohort of 134 participants (85 outpatients with MDD and 49 healthy participants) has been evaluated at baseline. The clinical characteristics of this cohort are similar to other studies of MDD. Recruitment at all sites is ongoing to a target sample of 290 participants. CAN-BIND will identify biomarkers of treatment response in MDD through extensive clinical, molecular, and imaging assessments, in order to improve treatment practice and clinical outcomes. It will also create an innovative, robust platform and database for future research.
Resumo:
Scenarios for the emergence or bootstrap of a lexicon involve the repeated interaction between at least two agents who must reach a consensus on how to name N objects using H words. Here we consider minimal models of two types of learning algorithms: cross-situational learning, in which the individuals determine the meaning of a word by looking for something in common across all observed uses of that word, and supervised operant conditioning learning, in which there is strong feedback between individuals about the intended meaning of the words. Despite the stark differences between these learning schemes, we show that they yield the same communication accuracy in the limits of large N and H, which coincides with the result of the classical occupancy problem of randomly assigning N objects to H words.
Resumo:
Extramural learning refers to the educational process that takes place outside the walls of the school (or the university). Extramural learning that takes place in a science center is characterized by hands-on and interactivity. Interactive solar energy exhibits are particularly well suited for out-door science centers. The paper presents some solar energy hands-on exhibits and extramural activities that the author has initiated and participated in.