1000 resultados para 3-aminotropolone
Resumo:
The polyphosphoric acid induced intramolecular acylation of lactones has been applied to the synthesis of the bicyclo [0,3,5] decane system, and the preparation of azulene, 1-methyl-, 2-methyl- and 1,3-dimethylazulene is reported.
Resumo:
97 s.
Resumo:
Although several authors have implicated 3-hydroxyanthranilic acid (3-OHA) as an intermediate in tryptophaniacin pathway in animals (Kaplan, 1961), alternative pathways of metabolism of this compound have not been fully explored. Madhusudanan Nair obtained an enzyme from spinach leaves which could convert 3-OHA to cinnabarinic acid (private communication). Viollier and Süllmann (1950) reported the conversion of 3-OHA to an unidentified red compound by rat liver homogenates. The present investigation describes the identification of this product as cinnabarinic acid (2-amino-3-H-isophenoxazine-3-one-1,9-dicarboxylic acid). Cinnabarinic acid is known to occur in nature along with cinnabarin is olated from the fungus Polystictus sanguineus (Gripenberg et al., 1957; Gripenberg, 1958).
Resumo:
In the title molecule, C23H14N4, the triazoloisoquinoline ring system is nearly planar, with an r.m.s. deviation of 0.038 (2) angstrom and a maximum deviation of -0.030 (2) angstrom from the mean plane of the triazole ring C atom which is bonded to the benzene ring. The benzene and phenyl rings are twisted by 57.65 (8) and 53.60 (9)degrees, respectively, with respect to the mean plane of the triazoloisoquinoline ring system. In the crystal structure, molecules are linked by weak aromatic pi-pi interactions [centroid-centroid distance = 3.8074 (12) angstrom]. In addition, the crystal structure exhibits a nonclassical intermolecular C-H center dot center dot center dot N hydrogen bond.
Resumo:
In the title molecule, C22H14ClN3, the triazoloisoquinoline ring system is approximately planar, with an r.m.s. deviation of 0.033 (2) angstrom and a maximum departure from the mean plane of 0.062 (1) angstrom for the triazole ring C atom, bonded to the benzene ring. The benzene and phenyl rings are twisted by 57.02 (6) and 62.16 (6)degrees, respectively, to the mean plane of the triazoloisoquinoline ring system. The molecule is stabilized by a weak intramolecular pi-pi interaction [centroid-centroid distance = 3.7089 (10) angstrom] between the benzene and phenyl rings. In the crystal structure, weak intermolecular C-H center dot center dot center dot N hydrogen bonds and C-H center dot center dot center dot pi interactions link the molecules.
Resumo:
The conformation about the ethene bond [1.316 (3) angstrom] in the title compound, C25H18BrNO, is E. The quinoline ring forms dihedral angles of 67.21 (10) and 71.68 (10)degrees with the benzene and bromo-substituted benzene rings, respectively. High-lighting the non-planar arrangement of aromatic rings, the dihedral angle formed between the benzene rings is 58.57 (12)degrees.
Resumo:
In the title compound, C18H11ClN2O2, the isatin and 2-chloro-3-methylquinoline units are both almost planar, with r.m.s.deviations of 0.0075 and 0.0086 angstrom, respectively, and the dihedral angle between the mean planes of the two units is 83.13 (7)degrees. In the crystal, a weak intermolecular C-H center dot center dot center dot O interaction links the molecules into chains along the c axis.
Resumo:
dl-3-Methoxy-11-oxo-17β-carboxy-1,3,5(10),6,8-estrapentaene has been converted to dl-3-methoxy-17β-carboxy-1,3,5(10)-estratriene in fairly good yield.
Resumo:
3-Methyl-4-carboxy-2-(2′-methoxy-6′-naphthyl)cyclopenten-3-acetic acid, prepared from trans methyl 2-methyl-3-carbomethoxycyclopentanon-2-acetate and 2-methoxy-6-lithionaphthalene, on ring closure and catalytic hydrogenation gave dl-3-methoxy-17β-carboxy-1,3,5(10),6,8-estrapentaene.
Resumo:
The Raman spectrum of C-deuterated γ-glycine (NH3+CD2COO-) in the crystal powder form was taken using λ 2536·5 excitation. 26 Raman lines were recorded. Of these, eight lines are attributed to the external oscillations and eighteen Raman lines to the internal oscillations. Proper assignments are given to the observed frequencies.
Resumo:
The Raman spectrum of a single crystal of triglycine selenate G3Se which is ferroelectric below 22° C. has been photographed using λ 2537 excitation. 42 Raman lines have been recorded of which 6 belong to the lattice spectrum, 3 are due to NH...O oscillations and the remaining 33 are due to internal oscillations of the ions of glycine and SeO4--. There is a close similarity between the spectrum of triglycine selenate and the spectrum of its isomorph, triglycine sulphate, the frequency shifts due to the SO4-- ion being replaced by the frequency shifts due to the SeO4-- ion. The existence of glycine in the zwitterion form in the structure of G3Se is substantiated by the appearance in the Raman spectrum of lines which are attributable to NH3+ groups and COO- groups. The appearance of the additional C-H line at 2982 cm.-1 in the spectrum of triglycine selenate which is absent in the spectrum of α-glycine indicates the existence of planar monoprotonated glycine also in the structure, as indicated by X-ray studies.
Resumo:
The particle size and crystallite size of anatase increase markedly in the region of the crystal structure transformation. The unit cell of anatase seems to expand prior to the transformation to rutile. This expansion has been attributed to a displacive transformation of the type defined by Buerger. Smaller particle size and larger surface area seem to favour the transformation. The kinetics of the transformation of anatase prepared by the hydrolysis of titanium sulphate have been studied at different temperatures and are found to be considerably different from the kinetics of the transformation of pure anatase. The transformation becomes immeasurably slow below ∼695 ± 10°C compared to ∼610°C for pure anatase. An induction period is observed in the transformation of anatase obtained from sulphate hydrolysis and the duration decreases with increase in temperature. The activation energy is ∼120 kcal/mole, a value higher than that for the pure anatase-rutile transformation. The results have been interpreted in terms of the relative rates of nucleation and propagation processes. The activation energy for the nucleation process seems to be much larger than for the propagation process. The kinetics of the transformation of anatase samples doped with different amounts of sulphate ion impurity have also been studied and the transformation is found to be progressively decelerated with increase in the impurity concentration. The energy of activation for the transformation appears to increase progressively with increase in impurity concentration.