959 resultados para 3-COMPLEXES
Resumo:
The explorative coordination chemistry of the bridging ligand TTF-PPB is presented. Its strong binding ability to Co(II) and then to Ni(II) or Cu(II) in the presence of hexafluoroacetylacetonate (hfac(-)), forming new mono-and dinuclear complexes 1-3, is described. X-ray crystallographic studies have been conducted in the case of the free ligand TTF-PPB as well as its complexes [Co(TTF-PPB)(hfac)(2)] (1) and [Co(hfac)(2)(mu-TTF-PPB)Ni(hfac)(2)] (2). Each metal ion is bonded to two bidentate hfac-anions through their oxygen atoms and two nitrogen atoms of the PPB moiety with a distorted octahedral coordination geometry. Specifically, nitrogen donor atoms of TTF-PPB adopt a cis-coordination but not in the equatorial plane, which is quite rare. Electronic absorption, photoinduced intraligand charge transfer ((1)ILCT), and electrochemical behaviour of 1-3 have been investigated. UV-Vis spectroscopy shows very strong bands in the UV region consistent with ligand centred pi-pi* transitions and an intense broad band in the visible region corresponding to a spin-allowed pi-pi* (1)ILCT transition. Upon coordination, the (1)ILCT band is bathochromically shifted by 3100, 6100 and 5900 cm(-1) on going from 1 to 3. The electrochemical studies reveal that all of them undergo two reversible oxidation and one reversible reduction processes, ascribed to the successive oxidations of the TTF moiety and the reduction of the PPB unit, respectively.
Resumo:
IgE antibodies bind the high-affinity IgE Fc receptor (FcεRI), found primarily on mast cells and basophils, and trigger inflammatory cascades of the allergic response. Inhibitors of IgE-FcεRI binding have been identified and an anti-IgE therapeutic antibody (omalizumab) is used to treat severe allergic asthma. However, preformed IgE-FcεRI complexes that prime cells before allergen exposure dissociate extremely slowly and cannot be disrupted by strictly competitive inhibitors. IgE-Fc conformational flexibility indicated that inhibition could be mediated by allosteric or other non-classical mechanisms. Here we demonstrate that an engineered protein inhibitor, DARPin E2_79 (refs 9, 10, 11), acts through a non-classical inhibition mechanism, not only blocking IgE-FcεRI interactions, but actively stimulating the dissociation of preformed ligand-receptor complexes. The structure of the E2_79-IgE-Fc(3-4) complex predicts the presence of two non-equivalent E2_79 sites in the asymmetric IgE-FcεRI complex, with site 1 distant from the receptor and site 2 exhibiting partial steric overlap. Although the structure is indicative of an allosteric inhibition mechanism, mutational studies and quantitative kinetic modelling indicate that E2_79 acts through a facilitated dissociation mechanism at site 2 alone. These results demonstrate that high-affinity IgE-FcεRI complexes can be actively dissociated to block the allergic response and suggest that protein-protein complexes may be more generally amenable to active disruption by macromolecular inhibitors.
Resumo:
The regulation of cell morphology is a dynamic process under the control of multiple protein complexes acting in a coordinated manner. Phosphoinositide 3-kinases (PI3K) and their lipid products are widely involved in cytoskeletal regulation by interacting with proteins regulating RhoGTPases. Class II PI3K isoforms have been implicated in the regulation of the actin cytoskeleton, although their exact role and mechanism of action remain to be established. In this report, we have identified Dbl, a Rho family guanine nucleotide exchange factor (RhoGEF) as an interaction partner of PI3KC2β. Dbl was co-immunoprecipitated with PI3KC2β in NIH3T3 cells and cancer cell lines. Over-expression of Class II phosphoinositide 3-kinase PI3KC2β in NIH3T3 fibroblasts led to increased stress fibres formation and cell spreading. Accordingly, we found high basal RhoA activity and increased serum response factor (SRF) activation downstream of RhoA upon serum stimulation. In contrast, the dominant-negative form of PI3KC2β strongly reduced cell spreading and stress fibres formation, as well as SRF response. Platelet-derived growth factor (PDGF) stimulation of wild-type PI3KC2β over-expressing NIH3T3 cells strongly increased Rac and c-Jun N-terminal kinase (JNK) activation, but failed to show similar effect in the cells with the dominant-negative enzyme. Interestingly, epidermal growth factor (EGF) and PDGF stimulation led to increased extracellular signal-regulated kinase (Erk) and Akt pathway activation in cells with elevated wild-type PI3KC2β expression. Furthermore, increased expression of PI3KC2β protected NIH3T3 from detachment-dependent death (anoikis) in a RhoA-dependent manner. Taken together, these findings suggest that PI3KC2β modulates the cell morphology and survival through a specific interaction with Dbl and the activation of RhoA.
Resumo:
Neuroligins (NLs) constitute a family of cell-surface proteins that interact with neurexins (beta-Nxs), another class of neuronal cell-surface proteins, one of each class functioning together in synapse formation. The localization of the various neurexins and neuroligins, however, has not yet been clarified in chicken. Therefore, we studied the expression patterns of neurexin-1 (Nx-1) and neuroligin-1 and -3 during embryonic development of the chick retina and brain by reverse-transcriptase polymerase chain reaction (RT-PCR) and in situ hybridization (ISH). While neurexin-1 increased continuously in both brain and retina, the expression of both neuroligins was more variable. As shown by ISH, Nx-1 is expressed in the inner half retina along with differentiation of ganglion and amacrine cells. Transcripts of NL-1 were detected as early as day 4 and increased with the maturation of the different brain regions. In different brain regions, NL-1 showed a different time regulation. Remarkably, neuroligin-3 was entirely absent in retina. This study indicates that synaptogenetic processes in brain and retina use different molecular machineries, whereby the neuroligins might represent the more distinctly regulated part of the neurexin-neuroligin complexes. Noticeably, NL-3 does not seem to be involved in the making of retinal synapses.
Resumo:
We are interested in the syntheses of new complexes and in their characterization by single crystal X-ray diffraction techniques. Once we understand the structures, studies aimed at understanding uses of these complexes in the field of catalytic epoxidation using complexes soluble in water and syntheses of thin films (not assessed) were conducted. The syntheses, characterization and catalytic properties of a series of mononuclear, dinuclear and tetranuclear molybdenum and tungsten oxo complexes are described. The syntheses and structural characterization of two copper coordination polymers with 3,5-dihydroxylbenzoate ligand, and five paddlewheel shaped copper dendrimers coordinated with Fréchet-type dendrons are also detailed. The background of this dissertation is outlined in Chapter 1. Chapter 2 describes the syntheses, and characterization of two new mononuclear molybdenum(VI) and tungsten(VI) oxo complexes, MoO2Cl2(OPPh2CH2OH)2, and WO2Cl2(OPPh2CH2OH)2, bearing hydrophilic phosphine oxide ligand. The catalytic properties of these complexes for the epoxidation of cis-cyclooctene were also studied. Two new dinuclear molybdenum(VI) and tungsten(VI) oxo complexes Mo2O4Cl2[(HOCH2)PhPOO]2, and (CH3O)2(O)W(μ-O)(μ-O2PPh2)2W(O)(CH3O)2, bearing organophosphinate ligand are described in Chapter 3 and 4. Chapter 4 and 5 describes the syntheses and characterization of tetranuclear molybdenum(V) oxo complexes bearing various organophosphinate ligands. The catalytic abilities of these complexes for the epoxidation of cis-cyclooctene in the presence of hydrogen peroxide as oxidant were explored as well. Various spectroscopic methods, such as IR, UV-vis, and NMR are used to characterize the nature of these complexes. Crystal structures of compounds MoO2Cl2(OPPh2CH2OH)2, WO2Cl2(OPPh2CH2OH)2, Mo2O4Cl2[(HOCH2)PhPOO]2, (CH3O)2(O)W(μ-O)(μ-O2PPh2)2W(O)(CH3O)2, and Mo4(µ3-O)4(µ-O2PR2)4O4 (R=Ph, Me, ClCH2, o-C6H4(CH2)2) are also presented. The syntheses, and structural characterization of three copper(II) coordination polymers bearing 3,5-dihydroxybenzoate ligand are described in Chapter 6. Two copper(II) coordination polymers, [Cu2(3,5-dhb)2(pyridine)4]n, and [Cu2(3,5-dhb)4]n were afforded based on different amount of pyridine used in the reaction. The structures of these complexes are further built into 2D or 3D networks via inter or intra hydrogen bonds. The syntheses and structural characterization of the zinc(II) monomer, Zn(3,5-dhb)2(pyridine)2 is also described in this Chapter. Chapter 7 describes the syntheses, and characterization of five dendronized dicopper complexes bearing different generations of Fréchet-type dendrons. The structures of 3,5- bis(benzoyloxl)benzoic acid, 3,5-(PhCOO)2PhCOOH (G1), Cu2(3,5-dhb)4(THF)2, Cu2(G1)4(pyridine)2, and Cu2(G1)4(CH3OH)2 were characterized unambiguously by single X-ray diffraction. In addition, all compounds were characterized by FT-IR, UV-vis spectroscopy and elemental analyses.
Resumo:
OBJECTIVE: Insulin-like growth factor-I (IGF-I) is critically involved in the control of cartilage matrix metabolism. It is well known that IGF-binding protein-3 (IGFBP-3) is increased during osteoarthritis (OA), but its function(s) is not known. In other cells, IGFBP-3 can regulate IGF-I action in the extracellular environment and can also act independently inside the cell; this includes transcriptional gene control in the nucleus. These studies were undertaken to localize IGFBP-3 in human articular cartilage, particularly within cells. DESIGN: Cartilage was dissected from human femoral heads derived from arthroplasty for OA, and OA grade assessed by histology. Tissue slices were further characterized by extraction and assay of IGFBPs by IGF ligand blot (LB) and by enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry (IHC) for IGF-I and IGFBP-3 was performed on cartilage from donors with mild, moderate and severe OA. Indirect fluorescence and immunogold-labeling IHC studies were included. RESULTS: LBs of chondrocyte lysates showed a strong signal for IGFBP-3. IHC of femoral cartilage sections at all OA stages showed IGF-I and IGFBP-3 matrix stain particularly in the top zones, and closely associated with most cells. A prominent perinuclear/nuclear IGFBP-3 signal was seen. Controls using non-immune sera or antigen-blocked antibody showed negative or strongly reduced stain. In frozen sections of human ankle cartilage, immunofluorescent IGFBP-3 stain co-localized with the nuclear 4',6-diamidino-2-phenyl indole (DAPI) stain in greater than 90% of the cells. Immunogold IHC of thin sections and transmission electron immunogold microscopy of ultra-thin sections showed distinct intra-nuclear staining. CONCLUSIONS: IGFBP-3 in human cartilage is located in the matrix and within chondrocytes in the cytoplasm and nuclei. This new finding indicates that the range of IGFBP-3 actions in articular cartilage is likely to include IGF-independent roles and opens the door to studies of its nuclear actions, including the possible regulation of hormone receptors or transcriptional complexes to control gene action.
Resumo:
Export of mRNA from the nucleus is linked to proper processing and packaging into ribonucleoprotein complexes. Although several observations indicate a coupling between mRNA 3' end formation and export, it is not known how these two processes are mechanistically connected. Here, we show that a subunit of the mammalian pre-mRNA 3' end processing complex, CF I(m)68, stimulates mRNA export. CF I(m)68 shuttles between the nucleus and the cytoplasm in a transcription-dependent manner and interacts with the mRNA export receptor NXF1/TAP. Consistent with the idea that CF I(m)68 may act as a novel adaptor for NXF1/TAP, we show that CF I(m)68 promotes the export of a reporter mRNA as well as of endogenous mRNAs, whereas silencing by RNAi results in the accumulation of mRNAs in the nucleus. Moreover, CF I(m)68 associates with 80S ribosomes but not polysomes, suggesting that it is part of the mRNP that is remodeled in the cytoplasm during the initial stages of translation. These results reveal a novel function for the pre-mRNA 3' end processing factor CF I(m)68 in mRNA export.
In vitro effects of novel ruthenium complexes in Neospora caninum and Toxoplasma gondii tachyzoites.
Resumo:
Upon the screening of 16 antiproliferative compounds against Toxoplasma gondii and Neospora caninum, two hydrolytically stable ruthenium complexes (compounds 16 and 18) exhibited 50% inhibitory concentrations of 18.7 and 41.1 nM (T. gondii) and 6.7 and 11.3 nM (N. caninum). To achieve parasiticidal activity with compound 16, long-term treatment (22 to 27 days at 80 to 160 nM) was required. Transmission electron microscopy demonstrated the rapid impact on and ultrastructural alterations in both parasites. These preliminary findings suggest that the potential of ruthenium-based compounds should thus be further exploited.
Resumo:
There is an increasing demand for novel metal-based complexes with biologically relevant molecules in technology and medicine. Three new Cu(II) coordination compounds with antifungal agent isoconazole (L), namely mononuclear complexes CuCl2(L)(2) (1), and Cu(O2CMe)(2)(L)(2)center dot 2H(2)O (2) and coordination polymer Cu(pht)(L)(2)(n) (3) (where H(2)pht - o-phthalic acid) were synthesized and characterized by IR spectroscopy, thermogravimetric analysis and X-ray crystallography. X-ray analysis showed that in all complexes, the isoconazole is coordinated to Cu(II) centres by a N atom of the imidazole fragment. In complex I, the square-planar environment of Cu(II) atoms is completed by two N atoms of isoconazole and two chloride ligands, whereas the Cu(II) atoms are coordinated by two N atoms from two isoconazole ligands and two O atoms from the different carboxylate residues: acetate in 2 and phthalate in 3. The formation of an infinite chain through the bridging phthalate ligand is observed in 3. The biosynthetic ability of micromycetes Aspergillus niger CNMN FD 10 in the presence of the prepared complexes 1-3 as well as the antifungal drug isoconazole were studied. Complexes 2 and 3 accelerate the biosynthesis of enzymes (beta-glucosidase, xylanase and endoglucanase) by this fungus. Moreover, a simplified and improved method for the preparation of isoconazole nitrate was developed.
Resumo:
Poly(A)-binding protein (PABP) stimulates translation initiation by binding simultaneously to the mRNA poly(A) tail and eukaryotic translation initiation factor 4G (eIF4G). PABP activity is regulated by PABP-interacting (Paip) proteins. Paip1 binds PABP and stimulates translation by an unknown mechanism. Here, we describe the interaction between Paip1 and eIF3, which is direct, RNA independent, and mediated via the eIF3g (p44) subunit. Stimulation of translation by Paip1 in vivo was decreased upon deletion of the N-terminal sequence containing the eIF3-binding domain and upon silencing of PABP or several eIF3 subunits. We also show the formation of ternary complexes composed of Paip1-PABP-eIF4G and Paip1-eIF3-eIF4G. Taken together, these data demonstrate that the eIF3-Paip1 interaction promotes translation. We propose that eIF3-Paip1 stabilizes the interaction between PABP and eIF4G, which brings about the circularization of the mRNA.
Resumo:
The initial step in coronavirus-mouse hepatitis virus (MHV) replication is the synthesis of negative strand RNA from a positive strand genomic RNA template. Our approach to studying MHV RNA replication is to identify the cis-acting signals for RNA synthesis and the protein(s) which recognizes these signals at the 3$\sp\prime$ end of genomic RNA of MHV. To determine whether host cellular and/or virus-specific proteins interact with the 3$\sp\prime$ end of the coronavirus genome, an RNase T$\sb1$ protection/gel mobility shift electrophoresis assay was used to examine cytoplasmic extracts from either mock- or MHV-JHM-infected 17Cl-1 murine cells for the ability to form complexes with defined regions of the genomic RNA. A conserved 11 nucleotide sequence UGAAUGAAGUU at nucleotide positions 36 to 26 from the 3$\sp\prime$ end of genomic RNA was identified to be responsible for the specific binding of host proteins, by using a series of RNA probes with deletions and mutations in this region. The RNA probe containing the 11 nucleotide sequence bound approximately four host cellular proteins with a highly labeled 120 kDa and three minor species with sizes of 103, 81 and 55 kDa, assayed by UV-induced covalent cross-linking. Mutation of the 11 nucleotide motif strongly inhibited cellular protein binding, and decreased the amount of the 103 and 81 kDa proteins in the complex to undetectable levels and strongly reduced the binding of the 120 kDa protein. Less extensive mutations within this 11 nucleotide motif resulted in variable decreases in RNA-protein complex formation depending on each probe tested. The RNA-protein complexes observed with cytoplasmic extracts from MHV-JHM-infected cells in both RNase protection/gel mobility shift and UV cross-linking assays were indistinguishable to those observed with extracts from uninfected cells.^ To investigate the possible role of this 3$\sp\prime$ protein binding element in viral RNA replication in vivo, defective interfering RNA molecules with complete or partial mutations of the 11 nucleotide conserved sequence were transcribed in vitro, transfected to host 17Cl-1 cells in the presence of helper virus MHV-JHM and analyzed by agarose gel electrophoresis, competitive RT-PCR and direct sequencing of the RT-PCR products. Both negative strand synthesis and positive strand replication of DI RNA were affected by mutation that disrupts RNA-protein complex formation, even though the 11 mutated nucleotides were converted to wild type sequence, presumably by recombination with helper virus. Kinetic analysis indicated that recombination between DI RNA and helper virus occurred 5.5 to 7.5 hours post infection when replication of positive strand DI RNA was barely observed. Replication of positive strand DI RNAs carrying partial mutations within the 11 nucleotide motif was dependent upon recombination events after transfection. Replication was strongly inhibited when reversion to wild type sequence did not occur, and after recombination, reached similar levels as wild type DI RNA. A DI RNA with mutation upstream of the protein binding motif replicated as efficiently as wild type without undergoing recombination. Thus the conserved 11 nucleotide host protein binding motif appears to play an important role in viral RNA replication. ^
Resumo:
Ground penetrating radar (GPR) was used to determine peat basin geometry and the spatial distribution of free-phase biogenic gasses in two separate units of a northern peatland (Central and Southern Unit of Caribou Bog, Maine). The Central Unit is characterized by a deep basin structure (15 m maximum depth) and a raised (eccentric) bog topographic profile (up to 2 m topographic variation). Here numerous regions of electromagnetic (EM) wave scattering are considered diagnostic of the presence of extensive free-phase biogenic gas. In contrast, the Southern Unit is shallower (8 m maximum depth) and has a slightly convex upwards bog profile (less than 1 m topographic variation), and areas of EM wave scattering are notably absent. The biogenic gas zones interpreted from GPR in the Central Unit are associated with: (1) wooded heath vegetation at the surface, (2) open pools at the surface, (3) high water table elevations near the center of the basin, and (4) a region of overpressure (at approximately 5 m depth) immediately below the zone of free-phase gas accumulation. The latter suggests (1) a transient pressure head associated with low hydraulic conductivity resulting from the biogenic gasses themselves or confining layers in the peat that restrict both gas release and groundwater flow and/or (2) overpressure in the peat column as a result of the gas buildup itself. In contrast, the Southern Unit, where zones of EM scattering are absent, is characterized by: (1) predominantly shrub vegetation, (2) a lack of open pools, (3) only minor variations (less than 1 m) in water table elevation throughout the entire unit; and (4) generally upward groundwater flow throughout the basin. The results illustrate the nonuniformity of free-phase biogenic gas distribution at the peat basin scale and provide insights into the processes and controls associated with CH4 and CO2 accumulation in peatlands.