932 resultados para 280202 Computer Graphics
Resumo:
CAELinux is a Linux distribution which is bundled with free software packages related to Computer Aided Engineering (CAE). The free software packages include software that can build a three dimensional solid model, programs that can mesh a geometry, software for carrying out Finite Element Analysis (FEA), programs that can carry out image processing etc. Present work has two goals: 1) To give a brief description of CAELinux 2) To demonstrate that CAELinux could be useful for Computer Aided Engineering, using an example of the three dimensional reconstruction of a pig liver from a stack of CT-scan images. One can note that instead of using CAELinux, using commercial software for reconstructing the liver would cost a lot of money. One can also note that CAELinux is a free and open source operating system and all software packages that are included in the operating system are also free. Hence one can conclude that CAELinux could be a very useful tool in application areas like surgical simulation which require three dimensional reconstructions of biological organs. Also, one can see that CAELinux could be a very useful tool for Computer Aided Engineering, in general.
Resumo:
MATLAB is an array language, initially popular for rapid prototyping, but is now being increasingly used to develop production code for numerical and scientific applications. Typical MATLAB programs have abundant data parallelism. These programs also have control flow dominated scalar regions that have an impact on the program's execution time. Today's computer systems have tremendous computing power in the form of traditional CPU cores and throughput oriented accelerators such as graphics processing units(GPUs). Thus, an approach that maps the control flow dominated regions to the CPU and the data parallel regions to the GPU can significantly improve program performance. In this paper, we present the design and implementation of MEGHA, a compiler that automatically compiles MATLAB programs to enable synergistic execution on heterogeneous processors. Our solution is fully automated and does not require programmer input for identifying data parallel regions. We propose a set of compiler optimizations tailored for MATLAB. Our compiler identifies data parallel regions of the program and composes them into kernels. The problem of combining statements into kernels is formulated as a constrained graph clustering problem. Heuristics are presented to map identified kernels to either the CPU or GPU so that kernel execution on the CPU and the GPU happens synergistically and the amount of data transfer needed is minimized. In order to ensure required data movement for dependencies across basic blocks, we propose a data flow analysis and edge splitting strategy. Thus our compiler automatically handles composition of kernels, mapping of kernels to CPU and GPU, scheduling and insertion of required data transfer. The proposed compiler was implemented and experimental evaluation using a set of MATLAB benchmarks shows that our approach achieves a geometric mean speedup of 19.8X for data parallel benchmarks over native execution of MATLAB.
Resumo:
Scenic word images undergo degradations due to motion blur, uneven illumination, shadows and defocussing, which lead to difficulty in segmentation. As a result, the recognition results reported on the scenic word image datasets of ICDAR have been low. We introduce a novel technique, where we choose the middle row of the image as a sub-image and segment it first. Then, the labels from this segmented sub-image are used to propagate labels to other pixels in the image. This approach, which is unique and distinct from the existing methods, results in improved segmentation. Bayesian classification and Max-flow methods have been independently used for label propagation. This midline based approach limits the impact of degradations that happens to the image. The segmented text image is recognized using the trial version of Omnipage OCR. We have tested our method on ICDAR 2003 and ICDAR 2011 datasets. Our word recognition results of 64.5% and 71.6% are better than those of methods in the literature and also methods that competed in the Robust reading competition. Our method makes an implicit assumption that degradation is not present in the middle row.
Resumo:
Topological methods have been successfully used to identify features in scalar fields and to measure their importance. In this paper, we define a notion of topological saliency that captures the relative importance of a topological feature with respect to other features in its local neighborhood. Features are identified by extreme points of an input scalar field, and their importance measured by the so-called topological persistence. Computing the topological saliency of all features for varying neighborhood sizes results in a saliency plot that serves as a summary of relative importance of all topological features. We develop a convenient tool for users to interactively select and inspect features using the saliency plot. We demonstrate the use of topological saliency together with the rich information encoded in the saliency plot in several applications, including key feature identification, scalar field simplification, and feature clustering. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this work, first a Fortran code is developed for three dimensional linear elastostatics using constant boundary elements; the code is based on a MATLAB code developed by the author earlier. Next, the code is parallelized using BLACS, MPI, and ScaLAPACK. Later, the parallelized code is used to demonstrate the usefulness of the Boundary Element Method (BEM) as applied to the realtime computational simulation of biological organs, while focusing on the speed and accuracy offered by BEM. A computer cluster is used in this part of the work. The commercial software package ANSYS is used to obtain the `exact' solution against which the solution from BEM is compared; analytical solutions, wherever available, are also used to establish the accuracy of BEM. A pig liver is the biological organ considered. Next, instead of the computer cluster, a Graphics Processing Unit (GPU) is used as the parallel hardware. Results indicate that BEM is an interesting choice for the simulation of biological organs. Although the use of BEM for the simulation of biological organs is not new, the results presented in the present study are not found elsewhere in the literature. Also, a serial MATLAB code, and both serial and parallel versions of a Fortran code, which can solve three dimensional (3D) linear elastostatic problems using constant boundary elements, are provided as supplementary files that can be freely downloaded.
Resumo:
In this work, possibility of simulating biological organs in realtime using the Boundary Element Method (BEM) is investigated, with specific reference to the speed and the accuracy offered by BEM. First, a Graphics Processing Unit (GPU) is used to speed up the BEM computations to achieve the realtime performance. Next, instead of the GPU, a computer cluster is used. A pig liver is the biological organ considered. Results indicate that BEM is an interesting choice for the simulation of biological organs. Although the use of BEM for the simulation of biological organs is not new, the results presented in the present study are not found elsewhere in the literature.
Resumo:
In this work, possibility of simulating biological organs in realtime using the Boundary Element Method (BEM) is investigated. Biological organs are assumed to follow linear elastostatic material behavior, and constant boundary element is the element type used. First, a Graphics Processing Unit (GPU) is used to speed up the BEM computations to achieve the realtime performance. Next, instead of the GPU, a computer cluster is used. Results indicate that BEM is fast enough to provide for realtime graphics if biological organs are assumed to follow linear elastostatic material behavior. Although the present work does not conduct any simulation using nonlinear material models, results from using the linear elastostatic material model imply that it would be difficult to obtain realtime performance if highly nonlinear material models that properly characterize biological organs are used. Although the use of BEM for the simulation of biological organs is not new, the results presented in the present study are not found elsewhere in the literature.
Resumo:
Approximate Nearest Neighbour Field maps are commonly used by computer vision and graphics community to deal with problems like image completion, retargetting, denoising, etc. In this paper, we extend the scope of usage of ANNF maps to medical image analysis, more specifically to optic disk detection in retinal images. In the analysis of retinal images, optic disk detection plays an important role since it simplifies the segmentation of optic disk and other retinal structures. The proposed approach uses FeatureMatch, an ANNF algorithm, to find the correspondence between a chosen optic disk reference image and any given query image. This correspondence provides a distribution of patches in the query image that are closest to patches in the reference image. The likelihood map obtained from the distribution of patches in query image is used for optic disk detection. The proposed approach is evaluated on five publicly available DIARETDB0, DIARETDB1, DRIVE, STARE and MESSIDOR databases, with total of 1540 images. We show, experimentally, that our proposed approach achieves an average detection accuracy of 99% and an average computation time of 0.2 s per image. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
In the product conceptualization phase of design, sketches are often used for exploration of diverse behaviour patterns of the components to achieve the required functionality. This paper presents a method to animate the sketch produced using a tablet interface to aid verification of the desired behaviour. A sketch is a spatial organization of strokes whose perceptual organization helps one to visually interpret its components and their interconnections. A Gestalt based segmentation followed by interactive grouping and articulation, presented in this paper, enables one to use a mechanism simulation framework to animate the sketch in a “pick and drag” mode to visualize different configurations of the product and gain insight into the product’s behaviour.
Resumo:
Electrical Impedance Tomography (EIT) is a computerized medical imaging technique which reconstructs the electrical impedance images of a domain under test from the boundary voltage-current data measured by an EIT electronic instrumentation using an image reconstruction algorithm. Being a computed tomography technique, EIT injects a constant current to the patient's body through the surface electrodes surrounding the domain to be imaged (Omega) and tries to calculate the spatial distribution of electrical conductivity or resistivity of the closed conducting domain using the potentials developed at the domain boundary (partial derivative Omega). Practical phantoms are essentially required to study, test and calibrate a medical EIT system for certifying the system before applying it on patients for diagnostic imaging. Therefore, the EIT phantoms are essentially required to generate boundary data for studying and assessing the instrumentation and inverse solvers a in EIT. For proper assessment of an inverse solver of a 2D EIT system, a perfect 2D practical phantom is required. As the practical phantoms are the assemblies of the objects with 3D geometries, the developing of a practical 2D-phantom is a great challenge and therefore, the boundary data generated from the practical phantoms with 3D geometry are found inappropriate for assessing a 2D inverse solver. Furthermore, the boundary data errors contributed by the instrumentation are also difficult to separate from the errors developed by the 3D phantoms. Hence, the errorless boundary data are found essential to assess the inverse solver in 2D EIT. In this direction, a MatLAB-based Virtual Phantom for 2D EIT (MatVP2DEIT) is developed to generate accurate boundary data for assessing the 2D-EIT inverse solvers and the image reconstruction accuracy. MatVP2DEIT is a MatLAB-based computer program which simulates a phantom in computer and generates the boundary potential data as the outputs by using the combinations of different phantom parameters as the inputs to the program. Phantom diameter, inhomogeneity geometry (shape, size and position), number of inhomogeneities, applied current magnitude, background resistivity, inhomogeneity resistivity all are set as the phantom variables which are provided as the input parameters to the MatVP2DEIT for simulating different phantom configurations. A constant current injection is simulated at the phantom boundary with different current injection protocols and boundary potential data are calculated. Boundary data sets are generated with different phantom configurations obtained with the different combinations of the phantom variables and the resistivity images are reconstructed using EIDORS. Boundary data of the virtual phantoms, containing inhomogeneities with complex geometries, are also generated for different current injection patterns using MatVP2DEIT and the resistivity imaging is studied. The effect of regularization method on the image reconstruction is also studied with the data generated by MatVP2DEIT. Resistivity images are evaluated by studying the resistivity parameters and contrast parameters estimated from the elemental resistivity profiles of the reconstructed phantom domain. Results show that the MatVP2DEIT generates accurate boundary data for different types of single or multiple objects which are efficient and accurate enough to reconstruct the resistivity images in EIDORS. The spatial resolution studies show that, the resistivity imaging conducted with the boundary data generated by MatVP2DEIT with 2048 elements, can reconstruct two circular inhomogeneities placed with a minimum distance (boundary to boundary) of 2 mm. It is also observed that, in MatVP2DEIT with 2048 elements, the boundary data generated for a phantom with a circular inhomogeneity of a diameter less than 7% of that of the phantom domain can produce resistivity images in EIDORS with a 1968 element mesh. Results also show that the MatVP2DEIT accurately generates the boundary data for neighbouring, opposite reference and trigonometric current patterns which are very suitable for resistivity reconstruction studies. MatVP2DEIT generated data are also found suitable for studying the effect of the different regularization methods on reconstruction process. Comparing the reconstructed image with an original geometry made in MatVP2DEIT, it would be easier to study the resistivity imaging procedures as well as the inverse solver performance. Using the proposed MatVP2DEIT software with modified domains, the cross sectional anatomy of a number of body parts can be simulated in PC and the impedance image reconstruction of human anatomy can be studied.
Resumo:
Consider N points in R-d and M local coordinate systems that are related through unknown rigid transforms. For each point, we are given (possibly noisy) measurements of its local coordinates in some of the coordinate systems. Alternatively, for each coordinate system, we observe the coordinates of a subset of the points. The problem of estimating the global coordinates of the N points (up to a rigid transform) from such measurements comes up in distributed approaches to molecular conformation and sensor network localization, and also in computer vision and graphics. The least-squares formulation of this problem, although nonconvex, has a well-known closed-form solution when M = 2 (based on the singular value decomposition (SVD)). However, no closed-form solution is known for M >= 3. In this paper, we demonstrate how the least-squares formulation can be relaxed into a convex program, namely, a semidefinite program (SDP). By setting up connections between the uniqueness of this SDP and results from rigidity theory, we prove conditions for exact and stable recovery for the SDP relaxation. In particular, we prove that the SDP relaxation can guarantee recovery under more adversarial conditions compared to earlier proposed spectral relaxations, and we derive error bounds for the registration error incurred by the SDP relaxation. We also present results of numerical experiments on simulated data to confirm the theoretical findings. We empirically demonstrate that (a) unlike the spectral relaxation, the relaxation gap is mostly zero for the SDP (i.e., we are able to solve the original nonconvex least-squares problem) up to a certain noise threshold, and (b) the SDP performs significantly better than spectral and manifold-optimization methods, particularly at large noise levels.
Resumo:
Computer Assisted Assessment (CAA) has been existing for several years now. While some forms of CAA do not require sophisticated text understanding (e.g., multiple choice questions), there are also student answers that consist of free text and require analysis of text in the answer. Research towards the latter till date has concentrated on two main sub-tasks: (i) grading of essays, which is done mainly by checking the style, correctness of grammar, and coherence of the essay and (ii) assessment of short free-text answers. In this paper, we present a structured view of relevant research in automated assessment techniques for short free-text answers. We review papers spanning the last 15 years of research with emphasis on recent papers. Our main objectives are two folds. First we present the survey in a structured way by segregating information on dataset, problem formulation, techniques, and evaluation measures. Second we present a discussion on some of the potential future directions in this domain which we hope would be helpful for researchers.