881 resultados para 230106 Real and Complex Functions
Resumo:
Human activities can have a suite of positive and negative effects on animals and thus can affect various life history parameters. Human presence and agricultural practice can be perceived as stressors to which animals react with the secretion of glucocorticoids. The acute short-term secretion of glucocorticoids is considered beneficial and helps an animal to redirect energy and behaviour to cope with a critical situation. However, a long-term increase of glucocorticoids can impair e.g. growth and immune functions. We investigated how nestling barn owls (Tyto alba) are affected by the surrounding landscape and by human activities around their nest sites. We studied these effects on two response levels: (a) the physiological level of the hypothalamus-pituitary-adrenal axis, represented by baseline concentrations of corticosterone and the concentration attained by a standardized stressor; (b) fitness parameters: growth of the nestlings and breeding performance. Nestlings growing up in intensively cultivated areas showed increased baseline corticosterone levels late in the season and had an increased corticosterone release after a stressful event, while their body mass was decreased. Nestlings experiencing frequent anthropogenic disturbance had elevated baseline corticosterone levels, an increased corticosterone stress response and a lower body mass. Finally, breeding performance was better in structurally more diverse landscapes. In conclusion, anthropogenic disturbance affects offspring quality rather than quantity, whereas agricultural practices affect both life history traits.
Resumo:
The second scientific meeting of the European systems genetics network for the study of complex genetic human disease using genetic reference populations (SYSGENET) took place at the Center for Cooperative Research in Biosciences in Bilbao, Spain, December 10-12, 2012. SYSGENET is funded by the European Cooperation in the Field of Scientific and Technological Research (COST) and represents a network of scientists in Europe that use mouse genetic reference populations (GRPs) to identify complex genetic factors influencing disease phenotypes (Schughart, Mamm Genome 21:331-336, 2010). About 50 researchers working in the field of systems genetics attended the meeting, which consisted of 27 oral presentations, a poster session, and a management committee meeting. Participants exchanged results, set up future collaborations, and shared phenotyping and data analysis methodologies. This meeting was particularly instrumental for conveying the current status of the US, Israeli, and Australian Collaborative Cross (CC) mouse GRP. The CC is an open source project initiated nearly a decade ago by members of the Complex Trait Consortium to aid the mapping of multigenetic traits (Threadgill, Mamm Genome 13:175-178, 2002). In addition, representatives of the International Mouse Phenotyping Consortium were invited to exchange ongoing activities between the knockout and complex genetics communities and to discuss and explore potential fields for future interactions.
Resumo:
Using data from free listings and a survey in two villages of Tamil Nadu, India, we discuss local perceptions and uses of water tanks, a traditional irrigation infrastructure. We hypothesize that both farmers and nonfarmers perceive and use water tanks for purposes other than irrigation. We found that informants recognized the importance of water tanks for irrigation, but also acknowledged other socioeconomic uses and ecological functions. Marginal sectors (i.e., Scheduled Castes) use tank resources in more diverse ways than other sectors of the population. Findings are relevant for development. International organizations working on the revival of water tanks aim to transfer water management to farmers for the purpose of irrigation. By recognizing that tanks benefit people other than farmers and in ways other than providing irrigation water, organizations working on tank rejuvenation could achieve a more equitable management of tank resources.
Resumo:
BACKGROUND: Recent methodological advances allow better examination of speciation and extinction processes and patterns. A major open question is the origin of large discrepancies in species number between groups of the same age. Existing frameworks to model this diversity either focus on changes between lineages, neglecting global effects such as mass extinctions, or focus on changes over time which would affect all lineages. Yet it seems probable that both lineages differences and mass extinctions affect the same groups. RESULTS: Here we used simulations to test the performance of two widely used methods under complex scenarios of diversification. We report good performances, although with a tendency to over-predict events with increasing complexity of the scenario. CONCLUSION: Overall, we find that lineage shifts are better detected than mass extinctions. This work has significance to assess the methods currently used to estimate changes in diversification using phylogenetic trees. Our results also point toward the need to develop new models of diversification to expand our capabilities to analyse realistic and complex evolutionary scenarios.
Resumo:
This paper presents empirical evidence on the interrelationship that exists between the evolution of the Emerging Markets Bonds Index (EMBI) and some macroeconomic variables in seven Latin American countries; two of them (Ecuador and Panama), full dollarized. We make use of a Cointegrated Vector framework to analyze the short run effects from 2001 to 2009. The results suggest that EMBI is more stable in dollarized countries and that its evolution influences economic activity in non-dollarized economies; suggesting that investors confidence might be higher in dollarized countries where real and financial economic evolution are less tied than in non-dollarized ones.
Resumo:
This paper presents empirical evidence on the interrelationship that exists between the evolution of the Emerging Markets Bonds Index (EMBI) and some macroeconomic variables in seven Latin American countries; two of them (Ecuador and Panama), full dollarized. We make use of a Cointegrated Vector framework to analyze the short run effects from 2001 to 2009. The results suggest that EMBI is more stable in dollarized countries and that its evolution influences economic activity in non-dollarized economies; suggesting that investors confidence might be higher in dollarized countries where real and financial economic evolution are less tied than in non-dollarized ones.
Resumo:
BACKGROUND: The structure and organisation of ecological interactions within an ecosystem is modified by the evolution and coevolution of the individual species it contains. Understanding how historical conditions have shaped this architecture is vital for understanding system responses to change at scales from the microbial upwards. However, in the absence of a group selection process, the collective behaviours and ecosystem functions exhibited by the whole community cannot be organised or adapted in a Darwinian sense. A long-standing open question thus persists: Are there alternative organising principles that enable us to understand and predict how the coevolution of the component species creates and maintains complex collective behaviours exhibited by the ecosystem as a whole? RESULTS: Here we answer this question by incorporating principles from connectionist learning, a previously unrelated discipline already using well-developed theories on how emergent behaviours arise in simple networks. Specifically, we show conditions where natural selection on ecological interactions is functionally equivalent to a simple type of connectionist learning, 'unsupervised learning', well-known in neural-network models of cognitive systems to produce many non-trivial collective behaviours. Accordingly, we find that a community can self-organise in a well-defined and non-trivial sense without selection at the community level; its organisation can be conditioned by past experience in the same sense as connectionist learning models habituate to stimuli. This conditioning drives the community to form a distributed ecological memory of multiple past states, causing the community to: a) converge to these states from any random initial composition; b) accurately restore historical compositions from small fragments; c) recover a state composition following disturbance; and d) to correctly classify ambiguous initial compositions according to their similarity to learned compositions. We examine how the formation of alternative stable states alters the community's response to changing environmental forcing, and we identify conditions under which the ecosystem exhibits hysteresis with potential for catastrophic regime shifts. CONCLUSIONS: This work highlights the potential of connectionist theory to expand our understanding of evo-eco dynamics and collective ecological behaviours. Within this framework we find that, despite not being a Darwinian unit, ecological communities can behave like connectionist learning systems, creating internal conditions that habituate to past environmental conditions and actively recalling those conditions. REVIEWERS: This article was reviewed by Prof. Ricard V Solé, Universitat Pompeu Fabra, Barcelona and Prof. Rob Knight, University of Colorado, Boulder.
Resumo:
The small intestine is a dynamic and complex organ that is characterized by constant epithelium turnover and crosstalk among various cell types and the microbiota. Lymphatic capillaries of the small intestine, called lacteals, play key roles in dietary fat absorption and the gut immune response; however, little is known about the molecular regulation of lacteal function. Here, we performed a high-resolution analysis of the small intestinal stroma and determined that lacteals reside in a permanent regenerative, proliferative state that is distinct from embryonic lymphangiogenesis or quiescent lymphatic vessels observed in other tissues. We further demonstrated that this continuous regeneration process is mediated by Notch signaling and that the expression of the Notch ligand delta-like 4 (DLL4) in lacteals requires activation of VEGFR3 and VEGFR2. Moreover, genetic inactivation of Dll4 in lymphatic endothelial cells led to lacteal regression and impaired dietary fat uptake. We propose that such a slow lymphatic regeneration mode is necessary to match a unique need of intestinal lymphatic vessels for both continuous maintenance, due to the constant exposure to dietary fat and mechanical strain, and efficient uptake of fat and immune cells. Our work reveals how lymphatic vessel responses are shaped by tissue specialization and uncover a role for continuous DLL4 signaling in the function of adult lymphatic vasculature.
Resumo:
Dopamine (DA) plays a major role in motor and cognitive functions as well as in reward processing by regulating glutamatergic inputs. In particular in the striatum the release of DA rapidly influences synaptic transmission modulating both AMPA and NMDA receptors. Several neurodegenerative and neuropsychiatric disorders, including Parkinson, Huntington and addiction-related diseases, manifest a dysregulation of glutamate and DA signaling. Here, we will focus our attention on the mechanisms underlying the modulation of the glutamatergic transmission by DA in striatal circuits.
Resumo:
Extracellular vesicles represent a rich source of novel biomarkers in the diagnosis and prognosis of disease. However, there is currently limited information elucidating the most efficient methods for obtaining high yields of pure exosomes, a subset of extracellular vesicles, from cell culture supernatant and complex biological fluids such as plasma. To this end, we comprehensively characterize a variety of exosome isolation protocols for their efficiency, yield and purity of isolated exosomes. Repeated ultracentrifugation steps can reduce the quality of exosome preparations leading to lower exosome yield. We show that concentration of cell culture conditioned media using ultrafiltration devices results in increased vesicle isolation when compared to traditional ultracentrifugation protocols. However, our data on using conditioned media isolated from the Non-Small-Cell Lung Cancer (NSCLC) SK-MES-1 cell line demonstrates that the choice of concentrating device can greatly impact the yield of isolated exosomes. We find that centrifuge-based concentrating methods are more appropriate than pressure-driven concentrating devices and allow the rapid isolation of exosomes from both NSCLC cell culture conditioned media and complex biological fluids. In fact to date, no protocol detailing exosome isolation utilizing current commercial methods from both cells and patient samples has been described. Utilizing tunable resistive pulse sensing and protein analysis, we provide a comparative analysis of 4 exosome isolation techniques, indicating their efficacy and preparation purity. Our results demonstrate that current precipitation protocols for the isolation of exosomes from cell culture conditioned media and plasma provide the least pure preparations of exosomes, whereas size exclusion isolation is comparable to density gradient purification of exosomes. We have identified current shortcomings in common extracellular vesicle isolation methods and provide a potential standardized method that is effective, reproducible and can be utilized for various starting materials. We believe this method will have extensive application in the growing field of extracellular vesicle research.
Resumo:
This study examined the effect of optic nerve disease, hence retinal ganglion cell loss, on non-visual functions related to melanopsin signalling. Test subjects were patients with bilateral visual loss and optic atrophy from either hereditary optic neuropathy (n = 11) or glaucoma (n = 11). We measured melatonin suppression, subjective sleepiness and cognitive functions in response to bright light exposure in the evening. We also quantified the post-illumination pupil response to a blue light stimulus. All results were compared to age-matched controls (n = 22). Both groups of patients showed similar melatonin suppression when compared to their controls. Greater melatonin suppression was intra-individually correlated to larger post-illumination pupil response in patients and controls. Only the glaucoma patients demonstrated a relative attenuation of their pupil response. In addition, they were sleepier with slower reaction times during nocturnal light exposure. In conclusion, glaucomatous, but not hereditary, optic neuropathy is associated with reduced acute light effects. At mild to moderate stages of disease, this is detected only in the pupil function and not in responses conveyed via the retinohypothalamic tract such as melatonin suppression.
Resumo:
Diabetic retinopathy is the leading cause of visual loss in individuals under the age of 55. Most investigations into the pathogenesis of diabetic retinopathy have been concentrated on the neural retina since this is where clinical lesions are manifested. Recently, however, various abnormalities in the structural and secretory functions of retinal pigment epithelium that are essential for neuroretina survival, have been found in diabetic retinopathy. In this context, here we study the effect of hyperglycemic and hypoxic conditions on the metabolism of a human retinal pigment epithelial cell line (ARPE-19) by integrating quantitative proteomics using tandem mass tagging (TMT), untargeted metabolomics using MS and NMR, and 13C-glucose isotopic labeling for metabolic tracking. We observed a remarkable metabolic diversification under our simulated in vitro hyperglycemic conditions of diabetes, characterized increased flux through polyol pathways and inhibition of the Krebs cycle and oxidative phosphorylation. Importantly, under low oxygen supply RPE cells seem to consume rapidly glycogen storages and stimulate anaerobic glycolysis. Our results therefore pave the way to future scenarios involving new therapeutic strategies addressed to modulating RPE metabolic impairment, with the aim of regulating structural and secretory alterations of RPE. Finally, this study shows the importance of tackling biomedical problems by integrating metabolomic and proteomics results.
Resumo:
Objectives: To determine the incidence, severity and duration of lingual tactile and gustatory function impairments after lower third molar removal. Study Design: Prospective cohort study with intra-subject measures of 16 patients undergoing lower third molar extractions. Sensibility and gustatory functions were evaluated in each subject preoperatively, one week and one month after the extraction, using Semmes-Weinstein monofilaments and 5 different concentrations of NaCl, respectively. Additionally, all patients filled a questionnaire to assess subjective perceptions. Results: Although patients did not perceive any sensibility impairments, a statistically significant decrease was detected when Semmes-Weinstein monofilaments. This alteration was present at one week after the surgical procedure and fully recovered one month after the extraction. There were no variations regarding the gustatory function. Conclusions: Lower third molar removal under local anesthesia may cause light lingual sensibility impairment. Most of these alterations remain undetected to patients. These lingual nerve injuries are present one week after the extraction and recover one month after surgery. The taste seems to remain unaffected after these procedures.
Resumo:
Fine powders of minerals are used commonly in the paper and paint industry, and for ceramics. Research for utilizing of different waste materials in these applications is environmentally important. In this work, the ultrafine grinding of two waste gypsum materials, namely FGD (Flue Gas Desulphurisation) gypsum and phosphogypsum from a phosphoric acid plant, with the attrition bead mill and with the jet mill has been studied. The ' objective of this research was to test the suitability of the attrition bead mill and of the jet mill to produce gypsum powders with a particle size of a few microns. The grinding conditions were optimised by studying the influences of different operational grinding parameters on the grinding rate and on the energy consumption of the process in order to achieve a product fineness such as that required in the paper industry with as low energy consumption as possible. Based on experimental results, the most influential parameters in the attrition grinding were found to be the bead size, the stirrer type, and the stirring speed. The best conditions, based on the product fineness and specific energy consumption of grinding, for the attrition grinding process is to grind the material with small grinding beads and a high rotational speed of the stirrer. Also, by using some suitable grinding additive, a finer product is achieved with a lower energy consumption. In jet mill grinding the most influential parameters were the feed rate, the volumetric flow rate of the grinding air, and the height of the internal classification tube. The optimised condition for the jet is to grind with a small feed rate and with a large rate of volumetric flow rate of grinding air when the inside tube is low. The finer product with a larger rate of production was achieved with the attrition bead mill than with the jet mill, thus the attrition grinding is better for the ultrafine grinding of gypsum than the jet grinding. Finally the suitability of the population balance model for simulation of grinding processes has been studied with different S , B , and C functions. A new S function for the modelling of an attrition mill and a new C function for the modelling of a jet mill were developed. The suitability of the selected models with the developed grinding functions was tested by curve fitting the particle size distributions of the grinding products and then comparing the fitted size distributions to the measured particle sizes. According to the simulation results, the models are suitable for the estimation and simulation of the studied grinding processes.
Resumo:
An extensive literature suggests a link between executive functions and aggressive behavior in humans, pointing mostly to an inverse relationship, i.e., increased tendencies toward aggression in individuals scoring low on executive function tests. This literature is limited, though, in terms of the groups studied and the measures of executive functions. In this paper, we present data from two studies addressing these issues. In a first behavioral study, we asked whether high trait aggressiveness is related to reduced executive functions. A sample of over 600 students performed in an extensive behavioral test battery including paradigms addressing executive functions such as the Eriksen Flanker task, Stroop task, n-back task, and Tower of London (TOL). High trait aggressive participants were found to have a significantly reduced latency score in the TOL, indicating more impulsive behavior compared to low trait aggressive participants. No other differences were detected. In an EEG-study, we assessed neural and behavioral correlates of error monitoring and response inhibition in participants who were characterized based on their laboratory-induced aggressive behavior in a competitive reaction time task. Participants who retaliated more in the aggression paradigm and had reduced frontal activity when being provoked did not, however, show any reduction in behavioral or neural correlates of executive control compared to the less aggressive participants. Our results question a strong relationship between aggression and executive functions at least for healthy, high-functioning people.