999 resultados para 1995_01201806 MOC-7
Resumo:
In a recent review of which we were co-authors (Rivas-Martínez, Belmonte, Cantó, Fernández-González, Fuente, Moreno, Sánchez-Mata & Sancho, Lazaroa 7: 93-124. 1987), rejection of names Genistion purgantis Túxen in Túxen & Oberdorfer 1958 [Veróff. Geobot. Inst. Rúbel Zúrich 32: 228] and Senecio tournefortii-Genistapurgans Ass. Túxen & Oberdorfer 1958 [op. cit.: 229-230] versus Pino-Cytision purgantis Rivas-Martínez 1964 [Anales lnst. Bot. Cavanilles 22: 358] and Junipero nanae-Sarothamnetum purgantis Rivas-Martínez 1963 [Anales Inst. Bot. Cavanilles 21(1): 172-186] respectively, was proposed and adopted.
Resumo:
Glucagon-like peptide-1(7-36)amide (GLP-1) possesses several unique and beneficial effects for the potential treatment of type 2 diabetes. However, the rapid in-activation of GLP-1 by dipeptidyl peptidase IV (DPP IV) results in a short half-life in vivo (less than 2 min) hindering therapeutic development. In the present study, a novel His(7)-modified analogue of GLP-1, N-pyroglutamyl-GLP-1, as well as N-acetyl-GLP-1 were synthesised and tested for DPP IV stability and biological activity. Incubation of GLP-1 with either DPP IV or human plasma resulted in rapid degradation of native GLP-1 to GLP-1 (9-36),amide, while N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 were completely resistant to degradation. N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 bound to the GLP-1 receptor but had reduced affinities (IC50 values 32(.)9 and 6(.)7 nM, respectively) compared with native GLP-1 (IC50 0(.)37 nM). Similarly, both analogues stimulated cAMP production with EC50 values of 16(.)3 and 27 nM respectively compared with GLP-1 (EC50 4(.)7 nM). However, N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 exhibited potent insulinotropic activity in vitro at 5(.)6 mM glucose (P
Resumo:
Although the incretin hormone glucagon-like peptide-1 (GLP-1) is a potent stimulator of insulin release, its rapid degradation in vivo by the enzyme dipeptidyl peptidase IV (DPP IV) greatly limits its potential for treatment of type 2 diabetes. Here, we report two novel Ala(8)-substituted analogues of GLP-1, (Abu(8))GLP-1 and (Val(8) GLP-1 which were completely resistant to inactivation by DPP IV or human plasma. (Abu(8))GLP-1 and (Val(8))GLP-1 exhibited moderate affinities (IC50: 4.76 and 81.1 nM, respectively) for the human GLP-1 receptor compared with native GLP-1 (IC50: 0.37 nM). (Abu(8))GLP-1 and (Val(8))GLP-1 dose-dependently stimulated cAMP in insulin-secreting BRIN BD11 cells with reduced potency compared with native GLP-1 (1.5- and 3.5-fold, respectively). Consistent with other mechanisms of action, the analogues showed similar, or in the case of (Val(8))GLP-1 slightly impaired insulin releasing activity in BRIN BD11 cells. Using adult obese (ob/ob) mice, (Abu(8))GLP-1 had similar glucose-lowering potency to native GLP-1 whereas the action of (Val(8))GLP-1 was enhanced by 37%. The in vivo insulin-releasing activities were similar. These data indicate that substitution of Ala(8) in GLP-1 with Abu or Val confers resistance to DPP IV inactivation and that (Val(8))GLP-1 is a particularly potent N-terminally modified GLP-1 analogue of possible use in type 2 diabetes.
Resumo:
Background: In order to isolate the â??bestâ?? sperm for assisted conception a discontinuous two-step density gradient centrifugation is usually employed. This technique is known to isolate a subpopulation with good motility, morphology and nuclear DNA (nDNA) integrity. As yet its ability to isolate sperm with unfragmented mitochondrial DNA (mtDNA) is unknown. Methods: Semen was obtained from men (n=28) attending our Regional Fertility Centre for infertility investigations. We employed a modified long polymerase chain reaction to study mtDNA and a modified alkaline Comet assay to determine nDNA fragmentation. Results: The high- density fraction displayed significantly more wild type mtDNA (75% of samples) than that of the low- density fraction (25% of samples). In the high-density fraction, there was a higher incidence of single, rather than double or multiple deletions and the deletions were predominantly small scale (0.1-4.0kb). There was a strong correlation between nDNA fragmentation, the number of mtDNA deletions (r=0.7, p
Resumo:
Two 17-mer oligodeoxynucleotide-5'-linked-(6,7-diphenylpterin) conjugates, 2 and 3, were prepared as photosensitisers for targeting photooxidative damage to a 34-mer DNA oligodeoxynucleotide (ODN) fragment 1 representing the chimeric bcr-abl gene that is implicated in the pathogenesis of chronic myeloid leukaemia (CML). The base sequence in the 17-mer was 3'G G T A G T T A T T C C T T C T T5'. In the first of these ODN conjugates (2) the pterin was attached at its N3 atom, via a -(CH2)3OPO(OH)- linker, to the 5'-OH group of the ODN. Conjugate 2 was prepared from 2-amino-3-(3-hydroxypropyl)-6,7-diphenyl-4(3H)-pteridinone 10, using phosphoramidite methodology. Starting material 10 was prepared from 5-amino-7-methylthiofurazano[3,4-d]pyrimidine 4 via an unusual highly resonance stabilised cation 8, incorporating the rare 2H,6H-pyrimido[6,1-b][1,3]oxazine ring system. In the characterisation of 10 two pteridine phosphazenes, 15 and 29, were obtained, as well as new products containing two uncommon tricyclic ring systems, namely pyrimido[2,1-b]pteridine (20 and 24) and pyrimido[1,2-c]pteridine (27). In the second ODN conjugate the linker was -(CH2)5CONH(CH2)6OPO(OH)- and was attached to the 2-amino group of the pterin. In the preparation of 3, the N-hydroxysuccinimide ester 37 of 2-(5-carboxypentylamino)-6,7-diphenyl-4(3H)-pteridinone was condensed with the hexylamino-modified 17-mer. Excitation of 36 with near UV light in the presence of the single-stranded target 34-mer, 5'T G A C C A T C A A T A A G14 G A A G18 A A G21 C C C T T C A G C G G C C3' 1 caused oxidative damage at guanine bases, leading to alkali-labile sites which were monitored by polyacrylamide gel electrophoresis. Cleavage was observed at all guanine sites with a marked preference for cleavage at G14. In contrast, excitation of ODN-pteridine conjugate 2 in the presence of 1 caused oxidation of the latter predominantly at G18, with a smaller extent of cleavage at G15 and G14 (in the double-stranded portion) and G21. These results contrast with our previous observation of specific cleavage at G21 with ruthenium polypyridyl sensitisers, and suggest that a different mechanism, probably one involving Type 1 photochemical electron transfer, is operative. Much lower yields were found with the ODN-pteridine conjugate 3, perhaps as a consequence of the longer linker between the ODN and the pteridine in this case.