761 resultados para 1077
Resumo:
We have determined the cross-section σ for color center generation under single Br ion impacts on amorphous SiO2. The evolution of the cross-sections, σ(E) and σ(Se), show an initial flat stage that we associate to atomic collision mechanisms. Above a certain threshold value (Se > 2 keV/nm), roughly coinciding with that reported for the onset of macroscopic disorder (compaction), σ shows a marked increase due to electronic processes. In this regime, a energetic cost of around 7.5 keV is necessary to create a non bridging oxygen hole center-E′ (NBOHC/E′) pair, whatever the input energy. The data appear consistent with a non-radiative decay of self-trapped excitons.
Resumo:
An electrically tunable system for the control of optical pulse sequences is proposed and demonstrated. It is based on the use of an electrooptic modulator for periodic phase modulation followed by a dispersive device to obtain the temporal Talbot effect. The proposed configuration allows for repetition rate multiplication with different multiplication factors and with the simultaneous control of the pulse train envelope by simply changing the electrical signal driving the modulator. Simulated and experimental results for an input optical pulse train of 10 GHz are shown for different multiplication factors and envelope shapes.
Resumo:
There is strong evidence to indicate that carbon dioxide and other greenhouse gases are accumulating at unprecedented concentrations in out atmosphere contributing to global climate change. Evidence is equally strong that human activities, mainly the burning of fossil fuels, are driving force in this process (IPCC 2007). While different industries contribute varying amounts to total anthropogenic greenhouse gases, it is incumbent upon each to understand its contribution and search for sensible ways to reduce overall greenhouse gas production. The aim of this paper is the development of a methodology to determine the amount of CO2 emissions of a highway, allowing providing solutions that can improve the energy footprint and reduce its emissions
Resumo:
The complexity of climate change and its evolution during the last few years has a positive impact on new developments and approaches to reduce the emissions of CO2. Looking for a methodology to evaluate the sustainability of a roadway, a tool has been developed. Life Cycle Assessment (LCA) is being accepted by the road industry to measure and evaluate the environmental impacts of an infrastructure, as the energy consumption and carbon footprint. This paper describes the methodology to calculate the CO2 emissions associated with the energy embodied on a roadway along its life cycle, including construction, operations and demolition. It will assist to find solutions to improve the energy footprint and reduce the amount of CO2 emissions. Details are provided of both, the methodology and the data acquisition. This paper is an application of the methodology to the Spanish highways, using a local database. Two case studies and a practical example are studied to show the model as a decision support for sustainable construction in the road industry.
Resumo:
In this paper, an intelligent control approach based on neuro-fuzzy systems performance is presented, with the objective of counteracting the vibrations that affect the low-cost vision platform onboard an unmanned aerial system of rotating nature. A scaled dynamical model of a helicopter is used to simulate vibrations on its fuselage. The impact of these vibrations on the low-cost vision system will be assessed and an intelligent control approach will be derived in order to reduce its detrimental influence. Different trials that consider a neuro-fuzzy approach as a fundamental part of an intelligent semi-active control strategy have been carried out. Satisfactory results have been achieved compared to those obtained by means of vibration reduction passive techniques.
Resumo:
The ability to generate entangled photon pairs over a broad wavelength range opens the door to the simultaneous distribution of entanglement to multiple users in a network by using centralized sources and flexible wavelength-division multiplexing schemes. Here, we show the design of a metropolitan optical network consisting of tree-type access networks, whereby entangled photon pairs are distributed to any pair of users, independent of their location. The network is constructed employing commercial off-the-shelf components and uses the existing infrastructure, which allows for moderate deployment costs. We further develop a channel plan and a network-architecture design to provide a direct optical path between any pair of users; thus, allowing classical and one-way quantum communication, as well as entanglement distribution. This allows the simultaneous operation of multiple quantum information technologies. Finally, we present a more flexible backbone architecture that pushes away the load limitations of the original network design by extending its reach, number of users and capabilities.
Resumo:
Customer Satisfaction Surveys (CSS) have become an important tool for public transport planners, as improvements in the perceived quality of service lead to greater use of public transport and lower traffic pollution. Until now, Intelligent Transportation System (ITS) enhancements in public transport have traditionally included fleet management systems based on Automatic Vehicle Location (AVL) technologies, which can be used to optimize routing and scheduling, and to feed real-time information into passenger information channels. However, surveys of public transport users could also benefit from the new information technologies. As most customers carry their smartphones when traveling, Quick Response (QR) codes open up the possibility of conducting these surveys at a lower cost.This paper contributes to the limited existing literature by developing the analysis of QR codes applied to CSS in public transport and highlighting their importance in reducing the cost of data collection and processing. The added value of this research is that it provides the first assessment of a real case study in Madrid (Spain) using QR codes for this purpose. This pilot experience was part of a research project analyzing bus service quality in the same case study, so the QR code survey (155 valid questionnaires) was validated using a conventional face-to-face survey (520 valid questionnaires). The results show clearly that, after overcoming a few teething troubles, this QR code application will ultimately provide transport management with a useful tool to reduce survey costs
Resumo:
A more natural, intuitive, user-friendly, and less intrusive Human–Computer interface for controlling an application by executing hand gestures is presented. For this purpose, a robust vision-based hand-gesture recognition system has been developed, and a new database has been created to test it. The system is divided into three stages: detection, tracking, and recognition. The detection stage searches in every frame of a video sequence potential hand poses using a binary Support Vector Machine classifier and Local Binary Patterns as feature vectors. These detections are employed as input of a tracker to generate a spatio-temporal trajectory of hand poses. Finally, the recognition stage segments a spatio-temporal volume of data using the obtained trajectories, and compute a video descriptor called Volumetric Spatiograms of Local Binary Patterns (VS-LBP), which is delivered to a bank of SVM classifiers to perform the gesture recognition. The VS-LBP is a novel video descriptor that constitutes one of the most important contributions of the paper, which is able to provide much richer spatio-temporal information than other existing approaches in the state of the art with a manageable computational cost. Excellent results have been obtained outperforming other approaches of the state of the art.
Resumo:
Gap junction channels are formed by members of the connexin gene family and mediate direct intercellular communication through linked hemichannels (connexons) from each of two adjacent cells. While for most connexins, the hemichannels appear to require an apposing hemichannel to open, macroscopic currents obtained from Xenopus oocytes expressing rat Cx46 suggested that some hemichannels can be readily opened by membrane depolarization [Paul, D. L., Ebihara, L., Takemoto, L. J., Swenson, K. I. & Goodenough, D. A. (1991), J. Cell Biol. 115, 1077-1089]. Here we demonstrate by single channel recording that hemichannels comprised of rat Cx46 exhibit complex voltage gating consistent with there being two distinct gating mechanisms. One mechanism partially closes Cx46 hemichannels from a fully open state, gammaopen, to a substate, gammasub, about one-third of the conductance of gammaopen; these transitions occur when the cell is depolarized to inside positive voltages, consistent with gating by transjunctional voltage in Cx46 gap junctions. The other gating mechanism closes Cx46 hemichannels to a fully closed state, gammaclosed, on hyperpolarization to inside negative voltages and has unusual characteristics; transitions between gammaclosed and gammaopen appear slow (10-20 ms), often involving several transient substates distinct from gammasub. The polarity of activation and kinetics of this latter form of gating indicate that it is the mechanism by which these hemichannels open in the cell surface membrane when unapposed by another hemichannel. Cx46 hemichannels display a substantial preference for cations over anions, yet have a large unitary conductance (approximately 300 pS) and a relatively large pore as inferred from permeability to tetraethylammonium (approximately 8.5 angstroms diameter). These hemichannels open at physiological voltages and could induce substantial cation fluxes in cells expressing Cx46.