999 resultados para 1063
Resumo:
The nonlinear optical response of a current-carrying single molecule coupled to two metal leads and driven by a sequence of impulsive optical pulses with controllable phases and time delays is calculated. Coherent (stimulated, heterodyne) detection of photons and incoherent detection of the optically induced current are compared. Using a diagrammatic Liouville space superoperator formalism, the signals are recast in terms of molecular correlation functions which are then expanded in the many-body molecular states. Two dimensional signals in benzene-1,4-dithiol molecule show cross peaks involving charged states. The correlation between optical and charge current signal is also observed. (C) 2015 AIP Publishing LLC.
Resumo:
The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT) and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs) and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generated and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant-pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Resumo:
This work presents the development of piezocomposites made up of Macro Fiber Composites (MFCs) for aerospace applications and specifically involves, their computational analysis, material characterization and certain parametric studies. MFC was developed by NASA Langley Research Center in 1996 and currently is being distributed by Smart Material Co. 1] worldwide and finds applications both as an actuator as well as for sensor in various engineering applications. In this work, MFC is being modeled as an actuator and a theoretical formulation based on Variational Asymptotic Method (VAM) 2] is presented to analyse the laminates made up of MFCs. VAM minimizes the total electro-mechanical energy for the MFC laminate and approaches the exact solution asymptotically by making use of certain small parameters inherent to the problem through dimensional reduction. VAM provides closed form solutions for 1D constitutive law, recovery relations of warpings, 3D stress/strain fields and displacements and hence an ideal tool for carrying out parametric and design studies in such applications. VAM is geometrically exact and offers rigorous material characterization through cross-sectional analysis and dimensional reduction.
Resumo:
The cross-sectional stiffness matrix is derived for a pre-twisted, moderately thick beam made of transversely isotropic materials and having rectangular cross sections. An asymptotically-exact methodology is used to model the anisotropic beam from 3-D elasticity, without any further assumptions. The beam is allowed to have large displacements and rotations, but small strain is assumed. The strain energy is computed making use of the beam constitutive law and kinematical relations derived with the inclusion of geometrical nonlinearities and an initial twist. The energy functional is minimized making use of the Variational Asymptotic Method (VAM), thereby reducing the cross section to a point on the beam reference line with appropriate properties, forming a 1-D constitutive law. VAM is a mathematical technique employed in the current problem to rigorously split the 3-D analysis of beams into two: a 2-D analysis over the beam cross-sectional domain, which provides a compact semi-analytical form of the properties of the cross sections, and a nonlinear 1-D analysis of the beam reference curve. In this method, as applied herein, the cross-sectional analysis is performed asymptotically by taking advantage of a material small parameter and two geometric small parameters. 3-D strain components are derived using kinematics and arranged in orders of the small parameters. Closed-form expressions are derived for the 3-D non-linear warping and stress fields. Warping functions are obtained by the minimization of strain energy subject to certain set of constraints that render the 1-D strain measures well-defined. The zeroth-order 3-D warping field thus yielded is then used to integrate the 3-D strain energy density over the cross section, resulting in the 1-D strain energy density, which in turn helps identify the corresponding cross-sectional stiffness matrix. The model is capable of predicting interlaminar and transverse shear stresses accurately up to first order.
Resumo:
This work aims at asymptotically accurate dimensional reduction of non-linear multi-functional film-fabric laminates having specific application in design of envelopes for High Altitude Airships (HAA). The film-fabric laminate for airship envelope consists of a woven fabric core coated with thin films on each face. These films provide UV protection and Helium leakage prevention, while the core provides required structural strength. This problem is both geometrically and materially non-linear. To incorporate the geometric non-linearity, generalized warping functions are used and finite deformations are allowed. The material non-linearity is handled by using hyper-elastic material models for each layer. The development begins with three-dimensional (3-D) nonlinear elasticity and mathematically splits the analysis into a one-dimensional through-the-thickness analysis and a two-dimensional (2-D) plate analysis. The through-the-thickness analysis provides the 2-D constitutive law which is then given as an input to the 2-D reference surface analysis. The dimensional reduction is carried out using Variational Asymptotic Method (VAM) for moderate strains and very small thickness-to-wavelength ratio. It features the identification and utilization of additional small parameters such as ratio of thicknesses and stiffness coefficients of core and films. Closed form analytical expressions for warping functions and 2-D constitutive law of the film-fabric laminate are obtained.
Resumo:
This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic
Resumo:
Temperature and photo-dependent current-voltage characteristics are investigated in thin film devices of a hybrid-composite comprising of organic semiconductor poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) and cadmium telluride quantum dots (CdTe QDs). A detailed study of the charge injection mechanism in ITO/PEDOT: PSS-CdTe QDs/Al device exhibits a transition from direct tunneling to Fowler-Nordheim tunneling with increasing electric field due to formation of high barrier at the QD interface. In addition, the hybrid-composite exhibits a huge photoluminescence quenching compared to aboriginal CdTe QDs and high increment in photoconductivity (similar to 400%), which is attributed to the charge transfer phenomena. The effective barrier height (Phi(B) approximate to 0.68 eV) is estimated from the transition voltage and the possible origin of its variation with temperature and photo-illumination is discussed. (C) 2015 AIP Publishing LLC.
Resumo:
High sensitivity gas sensors are typically realized using metal catalysts and nanostructured materials, utilizing non-conventional synthesis and processing techniques, incompatible with on-chip integration of sensor arrays. In this work, we report a new device architecture, suspended core-shell Pt-PtOx nanostructure that is fully CMOS-compatible. The device consists of a metal gate core, embedded within a partially suspended semiconductor shell with source and drain contacts in the anchored region. The reduced work function in suspended region, coupled with builtin electric field of metal-semiconductor junction, enables the modulation of drain current, due to room temperature Redox reactions on exposure to gas. The device architecture is validated using Pt-PtO2 suspended nanostructure for sensing H-2 down to 200 ppb under room temperature. By exploiting catalytic activity of PtO2, in conjunction with its p-type semiconducting behavior, we demonstrate about two orders of magnitude improvement in sensitivity and limit of detection, compared to the sensors reported in recent literature. Pt thin film, deposited on SiO2, is lithographically patterned and converted into suspended Pt-PtO2 sensor, in a single step isotropic SiO2 etching. An optimum design space for the sensor is elucidated with the initial Pt film thickness ranging between 10 nm and 30 nm, for low power (< 5 mu W), room temperature operation. (C) 2015 AIP Publishing LLC.
Resumo:
We studied the effect of Fe doping on structural, magnetic, and dielectric properties of hexagonal ErMnO3 system. For 50% doping of Fe on Mn site in ErMnO3 modulated its crystallographic structure from hexagonal to orthorhombic phase. Accompanied with the structural phase transition in ErMnO3, the magnetic properties are effectively modified. The Fe doped samples exhibit enhancement in antiferromagnetic ordering Neel temperature (T-N) from 77K (ErMnO3) to 280K (ErFe0.5Mn0.5O3). The anomalies observed in the dielectric constant around T-N in doped ErMnO3 samples indicate the coupling between electric and magnetic order parameters. (C) 2015 AIP Publishing LLC.
Resumo:
Eu+3 was incorporated into the lattice of a lead-free ferroelectric Na1/2Bi1/2TiO3 (NBT) as per the nominal formula Na0.5Bi0.5-xEuxTiO3. This system was investigated with regard to the Eu+3 photoluminescence (PL) and structural behaviour as a function of composition and electric field. Electric field was found to irreversibly change the features in the PL spectra and also in the x-ray diffraction patterns below the critical composition x = 0.025. Detailed analysis revealed that below the critical composition, electric field irreversibly suppresses the structural heterogeneity inherent of the host matrix NBT and brings about a long range ferroelectric state with rhombohedral (R3c) distortion. It is shown that the structural disorder on the nano-scale opens a new channel for radiative transition which manifests as a new emission line branching off from the main D-5(0)-> F-7(0) line along with a concomitant change in the relative intensity of the other crystal field induced Stark lines with different J values. The study suggests that Eu+3 luminescence can be used to probe the relative degree of field induced structural ordering in relaxor ferroelectrics and also in high performance piezoelectric alloys where electric field couples very strongly with the lattice and structural degrees of freedom. (C) 2015 AIP Publishing LLC.
Resumo:
Self-assembly of nano sized particles during natural drying causes agglomeration and shell formation at the surface of micron sized droplets. The shell undergoes sol-gel transition leading to buckling at the weakest point on the surface and produces different types of structures. Manipulation of the buckling rate with inclusion of surfactant (sodium dodecyl sulphate, SDS) and salt (anilinium hydrochloride, AHC) to the nano-sized particle dispersion (nanosilica) is reported here in an acoustically levitated single droplet. Buckling in levitated droplets is a cumulative, complicated function of acoustic streaming, chemistry, agglomeration rate, porosity, radius of curvature, and elastic energy of shell. We put forward our hypothesis on how buckling occurs and can be suppressed during natural drying of the droplets. Global precipitation of aggregates due to slow drying of surfactant-added droplets (no added salts) enhances the rigidity of the shell formed and hence reduces the buckling probability of the shell. On the contrary, adsorption of SDS aggregates on salt ions facilitates the buckling phenomenon with an addition of minute concentration of the aniline salt to the dispersion. Variation in the concentration of the added particles (SDS/AHC) also leads to starkly different morphologies and transient behaviour of buckling (buckling modes like paraboloid, ellipsoid, and buckling rates). Tuning of the buckling rate causes a transition in the final morphology from ring and bowl shapes to cocoon type of structure. (C) 2015 AIP Publishing LLC.
Resumo:
n-n isotype heterojunction of InGaN and bare Si (111) was formed by plasma assisted molecular beam epitaxy without nitridation steps or buffer layers. High resolution X-ray diffraction studies were carried out to confirm the formation of epilayers on Si (111). X-ray rocking curves revealed the presence of large number of edge threading dislocations at the interface. Room temperature photoluminescence studies were carried out to confirm the bandgap and the presence of defects. Temperature dependent I-V measurements of Al/InGaN/Si (111)/Al taken in dark confirm the rectifying nature of the device. I-V characteristics under UV illumination, showed modest rectification and was operated at zero bias making it a self-powered device. A band diagram of the heterojunction is proposed to understand the transport mechanism for self-powered functioning of the device. (c) 2015 AIP Publishing LLC.
Resumo:
Experimental studies (circular dichroism and ultra-violet (UV) absorption spectra) and large scale atomistic molecular dynamics simulations (accompanied by order parameter analyses) are combined to establish a number of remarkable (and unforeseen) structural transformations of protein myoglobin in aqueous ethanol mixture at various ethanol concentrations. The following results are particularly striking. (1) Two well-defined structural regimes, one at x(EtOH) similar to 0.05 and the other at x(EtOH) similar to 0.25, characterized by formation of distinct partially folded conformations and separated by a unique partially unfolded intermediate state at x(EtOH) similar to 0.15, are identified. (2) Existence of non-monotonic composition dependence of (i) radius of gyration, (ii) long range contact order, (iii) residue specific solvent accessible surface area of tryptophan, and (iv) circular dichroism spectra and UV-absorption peaks are observed. Interestingly at x(EtOH) similar to 0.15, time averaged value of the contact order parameter of the protein reaches a minimum, implying that this conformational state can be identified as a molten globule state. Multiple structural transformations well known in water-ethanol binary mixture appear to have considerably stronger effects on conformation and dynamics of the protein. We compare the present results with studies in water-dimethyl sulfoxide mixture where also distinct structural transformations are observed along with variation of co-solvent composition. (C) 2015 AIP Publishing LLC.
Resumo:
In this article, we have presented ultrafast charge transfer dynamics through halogen bonds following vertical ionization of representative halogen bonded clusters. Subsequent hole directed reactivity of the radical cations of halogen bonded clusters is also discussed. Furthermore, we have examined effect of the halogen bond strength on the electron-electron correlation-and relaxation-driven charge migration in halogen bonded complexes. For this study, we have selected A-Cl (A represents F, OH, CN, NH2, CF3, and COOH substituents) molecules paired with NH3 (referred as ACl:NH3 complex): these complexes exhibit halogen bonds. To the best of our knowledge, this is the first report on purely electron correlation-and relaxation-driven ultrafast (attosecond) charge migration dynamics through halogen bonds. Both density functional theory and complete active space self-consistent field theory with 6-31+G(d, p) basis set are employed for this work. Upon vertical ionization of NCCl center dot center dot center dot NH3 complex, the hole is predicted to migrate from the NH3-end to the ClCN-end of the NCCl center dot center dot center dot NH3 complex in approximately 0.5 fs on the D-0 cationic surface. This hole migration leads to structural rearrangement of the halogen bonded complex, yielding hydrogen bonding interaction stronger than the halogen bonding interaction on the same cationic surface. Other halogen bonded complexes, such as H2NCl:NH3, F3CCl:NH3, and HOOCCl:NH3, exhibit similar charge migration following vertical ionization. On the contrary, FCl:NH3 and HOCl:NH3 complexes do not exhibit any charge migration following vertical ionization to the D-0 cation state, pointing to interesting halogen bond strength-dependent charge migration. (C) 2015 AIP Publishing LLC.
Resumo:
Unusual optical bandgap narrowing is observed in undoped SnO2 nanoparticles synthesized by the solution combustion method. The estimated crystallite size is nearly 7 nm. Though the quantum confinement effect predicts a larger optical bandgap for materials with small crystallite size than the bulk, the optical bandgap in the as synthesized materials is found to be 2.9 eV compared to the reported value of 3.6 eV for bulk SnO2 particles. The yellow-green photoluminescence emissions and the observed narrowing of the bandgap can be attributed to the deep donor levels of oxygen vacancies, owing to the high exothermicity of the combustion reaction and the faster cooling rates involved in the process. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.