1000 resultados para 1,3-Butadiene per unit sediment mass
Resumo:
Two sediment cores of 70 and 252 cm length were recovered from Hjort Sø, a small lake on Store Koldewey, Northeast Greenland, and studied with a multidisciplinary approach in order to reconstruct the local environmental history and to test the relevance of proxies for paleoenvironmental information. The basal sediments from the longer core are dominated by clastic matter, which was likely deposited during deglaciation of the lake basin. These clastic sediments are overlain by gyttja, which is also present throughout the shorter core. AMS radiocarbon dating was conducted on plant macrofossils of 11 samples from the gyttja in both cores. A reliable chronology was established for both cores, which dated the onset of organic accumulation at 9,500 cal. year BP. The Holocene temperature development, with an early to mid Holocene thermal maximum, is best reflected in the grain-size composition. Nutrient availability was apparently low during the early Holocene and led to low productivity in the lake and its vicinity. From ca. 7,000 cal. year BP, productivity in the lake increased significantly, probably induced by external nutrient input from goose excrements. From this time, micro- and macrofossil remains reflect relatively well the climate history of East Greenland, with a cooling during the middle Holocene, the medieval warming, and the Little Ice Age. The amount of organic matter in the sequence seems to be more affected by lake ice cover or by nutrient supply from the catchment than by temperature changes. The record from Hjort Sø thus reveals the difficulties in interpreting sedimentary records from high arctic regions.
Resumo:
Freshwater chlorophycean algae are characteristic organic-walled microfossils in recent coastal and shelf sediments from the Beaufort, Laptev and Kara seas (Arctic Ocean). The persistent occurrence of the chlorophycean algae Pediastrum spp. and Botryococcus cf. braunii in marine palynomorph assemblages is related to the discharge of freshwater and suspended matter from the large Siberian and North American rivers into the Arctic shelf seas. The distribution patterns of these algae in the marine environments reflect the predominant deposition of riverine sediments and organic matter along the salinity gradient from the outer estuaries and prodeltas to the shelf break. Sedimentary processes overprint the primary distribution of these algae. Resuspension of sediments by waves and bottom currents may transport sediments in the bottom nepheloid layer along the submarine channels to the shelf break. Bottom sediments and microfossils may be incorporated into sea ice during freeze-up in autumn and winter leading to an export from the shelves into the deep sea. The presence of these freshwater algae in sea-ice and bottom sediments in the central Arctic Ocean confirm that transport in sea ice is an important process which leads to a redistribution of shallow water microfossils.
Resumo:
Data on the amount and composition of organic carbon were determined in sediment cores from the Kara and Laptev Sea continental margin, representing oxygen isotope stages 1-6. The characterization of organic matter is based on hydrogen index (HI) values, n-alkanes and maceral composition, indicating the predominance of terrigenous organic matter through space and time. The variations in the amount and composition of organic carbon are mainly influenced by changes in fluvial sediment supply, Atlantic water inflow, and continental ice sheets. During oxygen isotope stage (OIS) 6, high organic carbon contents in sediments from the Laptev Sea and western East Siberian Sea continental margin were probably caused by the increased glacial erosion and further transport in the eastward-flowing boundary current along the continental margin. During OIS 5 and early OIS 3, some increased amounts of marine organic matter were preserved in sediments east of the Lomonosov Ridge, suggesting an influence of nutrient-rich Pacific waters. During OIS 2, terrigenous organic carbon supply was increased along the Barents and western Kara Sea continental margin caused by extended continental ice sheets in the Barents Sea (Svalbard to Franz Josef Land) area and increased glacial erosion. Along the Laptev Sea continental margin, on the other hand, the supply of terrigenous (organic) matter was significantly reduced due to the lack of major ice sheets and reduced river discharge. Towards the Holocene, the amount of total organic carbon (TOC) increased along the Kara and Laptev Sea continental margin, reaching average values of up to 0.5 g C/cm**2/ky. Between about 8 and 10 ka (9 and 11 Cal ka), i.e., during times when the inner shallow Kara and Laptev seas became largely flooded for the first time after the Last Glacial Maximum, maximum supply of terrigenous organic carbon occurred, which is related to an increase in coastal erosion and Siberian river discharge. During the last 8000 years, the increased amount of marine organic carbon preserved in the sediments from the Kara and Laptev Sea continental margin is interpreted as a result of the intensification of Atlantic water inflow along the Eurasian continental margin.
Resumo:
In a deep-sea sediment core recovered from a site lying well above the local lysocline, several organic geochemical proxies, and two different calcite dissolution indicators, are compared in order to evaluate the relationship between calcite dissolution and paleoproductivity over the past three glacial-interglacial cycles. The degree of foraminiferal break-up, and the CaCO3 particle size distribution, both point to significant periods of dissolution every 22 kyr during glacial stages and substages. These dissolution events are concomitant with periods of enhanced primary productivity, as indicated by the abundance of several biomarkers (alkenones, cholesterol, brassicasterol, keto-ol), used here to indicate changes in paleoproductivity. Dissolution fluctuations are highly coherent and in phase with the estimated paleoproductivity variations providing strong evidence that the observed dissolution is due to organic matter remineralization within the sediments rather, than to changes in CO32? concentration in the overlying water column.
Resumo:
The Cretaceous Equatorial Atlantic Gateway between the Central and South Atlantic basins is of interest not only for paleoceanographic and paleoclimatic studies, but also because it provided particularly favourable conditions for the accumulation and preservation of organic-rich sediments. Deposition of carbonaceous sediments along the Côte d'Ivoire-Ghana Transform Margin (Ocean Drilling Program Leg 159) was intimately linked to the plate tectonic and paleoceanographic evolution of this gateway. Notably, the formation of a marginal basement ridge on the southeastern border of the transform margin provided an efficient shelter of the landward Deep Ivorian Basin against erosive and potentially oxidizing currents. Different subsidence histories across the transform margin were responsible for the development of distinct depositional settings on the crest and on both sides of the basement ridge. Whereas the southern, oceanward flank of the basement ridge was characterized by rapid, continuous deepening since last Albian-early Cenomanian, marine sedimentation on the northern, landward flank was interrupted by a period of uplift and erosion in the late Albian, and rapid subsidence started after the early Coniacian. Organic-rich sediments occur throughout almost the entire Cretaceous section, but hydrogen-rich marine black shales were exclusively recovered from core sections above an uplift-related unconformity. These black shales formed when separation of Africa and South America was sufficient to allow permanent oceanic midwater exchange after the late Albian. Four periods of black shale accumulation are recovered, some of them are correlated with the global oceanic anoxic events: in the last Albian-earliest Cenomanian, at the Cenomanian-Turronian boundary, during the middle Coniacian-early Campanian, and in the mid-Maastrichtian. These periods were characterized by increasing carbon flux to the seafloor, induced by enhanced palaeoproductivity and intensified supply of terrestrial organic matter. Black shale depostion appears to be intimately linked to periods of rising or maximum eustatic sea level and to the expansion of the oxygen minimum zone, as indicated by foraminiferal biofacies. Intervals between black shales units, in contrast, indicate a shrinking oxygen minimum zone and enhanced detrital flux rates, probably related to lowering sea level. Upper Cretaceous detritral limestones with high porosities may provide excellent hydrocarbon reservoirs, alsthough their areal extent appears to be limited. Palaeogene porcellanites, capped by Neogene pelagic marls and clays, extend over a wider area and max provide another target for hydrocarbon exploration.
Resumo:
The molecular stratigraphy of Biogeochemical Oceanic Flux Study core 31K (19°N, 20°10'W) and Ocean Drilling Program Hole 658C (20°45'N, 18°35'W) has been studied for C37 alkenone abundances over the past 80 ka at high resolution (~circa 200-500 years). The derived Uk 37' sea surface temperature record for both cores shows a range of temperatures from about 18°C during the last glacial to 21.5°C during the early Holocene. Both records also reveal changes in sea surface temperature as much as 2°-4°C over a few hundred years, which correlate well with similar abrupt climatic changes observed in cores from elsewhere in the NE Atlantic, associated with 'Heinrich events'. Our results indicate that meltwater produced by these ice-rafting events was transmitted southward by the Canary Current, where it had considerable impact on sea surface temperatures in the subtropical eastern Atlantic.
Resumo:
We generated preliminary downcore records of total organic carbon content, calcium carbonate, long-chain n-alkane concentration, total alkenone concentration, and alkenone-based sea-surface temperature for samples from the easternmost flank of Nazca Ridge (Site 1237) and the eastern crest of Carnegie Ridge (Site 1239). Total organic carbon and long-chain n-alkane concentrations will be used to evaluate terrestrial sediment sources. Downcore records of alkenone sea-surface temperature will benefit studies of paleoceanography of the southeastern Pacific. Since these sites are located under the influence of major tectonic events, such as the uplift of the Andes Mountains and the closure of the Isthmus of Panama, the records will help us to examine the effects of the tectonic events on the oceanic environment.