973 resultados para 1,2,3-substituted cyclopropane
Resumo:
The hydroperoxy radical (HO2) plays a critical role in Earth's atmospheric chemistry as a component of many important reactions. The self-reaction of hydroperoxy radicals in the gas phase is strongly affected by the presence of water vapor. In this work, we explore the potential energy surfaces of hydroperoxy radicals hydrogen bonded to one or two water molecules, and predict atmospheric concentrations and vibrational spectra of these complexes. We predict that when the HO2 concentration is on the order of 108molecules·cm-3 at 298 K, that the number of HO2···H2O complexes is on the order of 107molecules·cm-3 and the number of HO2···(H2O)2 complexes is on the order of 106molecules·cm-3. Using the computed abundance of HO2···H2O, we predict that, at 298 K, the bimolecular rate constant for HO2···H2O + HO2 is about 10 times that for HO2 + HO2.
Resumo:
In this article we review the phenomenological consequences of radiative flavor-violation (RFV) in the MSSM. In the model under consideration the U(3)^3 flavor symmetry of the gauge sector is broken in a first step to U(2)^3 by the top and bottom Yukawa couplings of the superpotential (and possibly also by the bilinear SUSY-breaking terms). In a second step the remaining U(2)^3 flavor symmetry is softly broken by the trilinear A-terms in order to obtain the measured quark masses and the CKM matrix of the Standard Model (SM) at low energies. The phenomenological implications of this model depend on the actual choice of the SUSY breaking A-terms. If the CKM matrix is generated in the down sector (by A^d), Bs->mu^+mu^- receives non-decoupling contributions from Higgs penguins which become important already for moderate values of tan(beta). Also the Bs mixing amplitude can be significantly modified compared to the SM prediction including a potential induction of a new CP-violating phase (which is not possible in the MSSM with MFV).
Resumo:
Indoleamine 2,3-dioxygenase (IDO) suppresses adaptive immunity. T-cell proliferation and differentiation to effector cells require increased glucose consumption, aerobic glycolysis and glutaminolysis. The effect of IDO on the above metabolic pathways was evaluated in alloreactive T-cells. Mixed lymphocyte reaction (MLR) in the presence or not of the IDO inhibitor, 1-DL-methyl-tryptophane (1-MT), was used. In MLRs, 1-MT decreased tryptophan consumption, increased cell proliferation, glucose influx and lactate production, whereas it decreased tricarboxylic acid cycle activity. In T-cells, from the two pathways that could sense tryptophan depletion, i.e. general control nonrepressed 2 (GCN2) kinase and mammalian target of rapamycin complex 1, 1-MT reduced only the activity of the GCN2 kinase. Additionally 1-MT treatment of MLRs altered the expression and/or the phosphorylation state of glucose transporter-1 and of key enzymes involved in glucose metabolism and glutaminolysis in alloreactive T-cells in a way that favors glucose influx, aerobic glycolysis and glutaminolysis. Thus in alloreactive T-cells, IDO through activation of the GCN2 kinase, decreases glucose influx and alters key enzymes involved in metabolism, decreasing aerobic glycolysis and glutaminolysis. Acting in such a way, IDO could be considered as a constraining factor for alloreactive T-cell proliferation and differentiation to effector T-cell subtypes.
Resumo:
The synthesis, biological evaluation, and conformational analysis of 4-amino-indolo[2,3-c]azepin-3-one (Aia)-containing SRIF mimetics are reported. Different subtype selectivities are observed depending on the N- and C-terminal substituents of the D-Aia-Lys dipeptide mimetic. An sst(5)-selective analogue with subnanomolar binding affinity was obtained that is the most potent agonist reported to date. A nonselective mimetic with high potency was also identified. This study allows a better definition of the bioactive conformation of the essential D-Trp side chain in the somatostatin pharmacophore.
Resumo:
PURPOSE: Facial esthetics play an important role in social interactions. However, children with a repaired complete unilateral cleft lip and palate usually show some disfigurement of the nasolabial area. To date, few studies have assessed the nasolabial appearance after different treatment protocols. The aim of the present study was to compare the nasolabial esthetics after 1- and 3-stage treatment protocols. MATERIALS AND METHODS: Four components of the nasolabial appearance (nasal form, nasal deviation, mucocutaneous junction, and profile view) were assessed by 4 raters in 108 consecutively treated children who had undergone either 1-stage closure (Warsaw group, 41 boys and 19 girls, mean age 10.8 years, SD 2.0) or 3-stage (Nijmegen group, 30 boys and 18 girls, mean age 8.9 years, SD 0.7). A 5-grade esthetic index of Asher-McDade was used, in which grade 1 indicates the most esthetic and grade 5 the least esthetic outcome. RESULTS: The nasal form was judged the least esthetic in both groups and graded 3.1 (SD 1.1) and 3.2 (SD 1.1). The nasal deviation, mucocutaneous junction, and profile view were scored from 2.1 (SD 0.8) to 2.3 (SD 1.0) in both groups. The treatment outcome after the Warsaw and Nijmegen protocols was comparable. Neither overall nor any of the 4 components of the nasolabial appearance showed intercenter differences (P > .1). CONCLUSIONS: The nasolabial appearance after the Warsaw (1-stage) and Nijmegen (3-stage) protocols was comparable. The technique of lip repair (triangular flap in Warsaw and Millard rotation advancement in Nijmegen) gave comparable results for the esthetics of the nasolabial area.
Resumo:
A series of C-3 alkyl and arylalky 2,3-dideoxy hex-2-enopyranoside derivatives were synthesized by Morita-Baylis-Hillman reaction using enulosides 4, 5 and 6 and various aliphatic and aromatic aldehydes. The compounds were evaluated in vitro for the complete inhibition of growth of Mycobacterium tuberculosis H37Rv. They exhibited moderate to good activity in the range of 25-1.56 µg/mL. Among these, 4d, 4h, 5c and 4hr showed activity at minimum inhibitory concentrations, 3.12, 6.25, 1.56 and 1.56µg/mL, respectively. These compounds were safe against cytotoxicity in VERO cell line and mouse macrophage cell line J 744A.1. A QSAR analysis by CP-MLR with alignment-free 3D-descriptors indicated the relevance of structure space comparable to the minimum energy conformation (from conformational analysis) of 5c to the activity. The study indicates that the compounds attaining conformational space 5c and reflecting some symmetry, minimum eccentricity and closely placed geometric and electronegativity centers therein are favorable for activity.
Resumo:
Bistriazoles, 1,3-bis(1,2,4-triazol-4-yl)propane (tr2pr) and 1,3-bis(1,2,4-triazol-4-yl)adamantane (tr2ad), were examined in combination with the rigid tetratopic 1,3,5,7-adamantanetetracarboxylic acid (H4-adtc) platform for the construction of neutral heteroleptic copper(II) metal−organic frameworks. Two coordination polymers, [{Cu4(OH)2(H2O)2}{Cu4(OH)2}(tr2pr)2(H-adtc)4]·2H2O (1) and [Cu4(OH)2(tr2ad)2(H-adtc)2(H2O)2]·3H2O (2), were synthesized and structurally characterized. In complexes 1 and 2, the N1,N2-1,2,4-triazolyl (tr) and μ3-OH− groups serve as complementary bridges between adjacent metal centers supporting the tetranuclear dihydroxo clusters. The structure of 1 represents a unique association of two different kinds of centrosymmetrical {Cu4(OH)2} units in a tight 3D framework, while in compound 2, another configuration type of acentric tetranuclear metal clusters is organized in a layered 3,6-hexagonal motif. In both cases, the {Cu4(OH)2} secondary building block and trideprotonated carboxylate H-adtc3− can be viewed as covalently bound six- and three-connected nodes that define the net topology. The tr ligands, showing μ3- or μ4-binding patterns, introduce additional integrating links between the neighboring {Cu4(OH)2} fragments. A variable-temperature magnetic susceptibility study of 2 demonstrates strong antiferromagnetic intracluster coupling (J1 = −109 cm−1 and J2 = −21 cm−1), which combines for the bulk phase with a weak antiferromagnetic intercluster interaction (zj = −2.5 cm−1).
Resumo:
Currently, the contributions of Starlette, Stella, and AJISAI are not taken into account when defining the International Terrestrial Reference Frame (ITRF), despite the large amount of data collected in a long time-span. Consequently, the SLR-derived parameters and the SLR part of the ITRF are almost exclusively defined by LAGEOS-1 and LAGEOS-2. We investigate the potential of combining the observations to several SLR satellites with different orbital characteristics. Ten years of SLR data are homogeneously processed using the development version 5.3 of the Bernese GNSS Software. Special emphasis is put on orbit parameterization and the impact of LEO data on the estimation of the geocenter coordinates, Earth rotation parameters, Earth gravity field coefficients, and the station coordinates in one common adjustment procedure. We find that the parameters derived from the multi-satellite solutions are of better quality than those obtained in single satellite solutions or solutions based on the two LAGEOS satellites. A spectral analysis of the SLR network scale w.r.t. SLRF2008 shows that artifacts related to orbit perturbations in the LAGEOS-1/2 solutions, i.e., periods related to the draconitic years of the LAGEOS satellites, are greatly reduced in the combined solutions.
Resumo:
The synthesis of the three N,N′-di(4-coumaroyl)tetramines, i.e., of (E,E)-N-{3-[(2-aminoethyl)amino]propyl}-3,3′-bis(4-hydroxyphenyl)-N,N′-(ethane-1,2-diyl)bis[prop-2-enamide] (1a), (E,E)-N-{4-[(2-aminoethyl)amino]butyl}-3,3′-bis(4-hydroxyphenyl)-N,N′-(ethane-1,2-diyl)bis[prop-2-enamide] (1b), and (E,E)-N-{6-[(2-aminoethyl)amino]hexyl}-3,3′-bis(4-hydroxyphenyl)-N,N′-(ethane-1,2-diyl)bis[prop-2-enamide] (1c), is described. It proceeds through stepwise construction of the symmetric polyamine backbone including protection and deprotection steps of the amino functions. Their behavior on TLC in comparison with that of 1,4-di(4-coumaroyl)spermine (=(E,E)-N-{4-[(3-aminopropyl)amino]butyl}-3,3′-bis(4-hydroxyphenyl)-N,N′-(propane-1,3-diyl)bis[prop-2-enamide]; 2) is discussed.
Resumo:
del S. Telemann
Resumo:
[Carl Oestreich]