1000 resultados para 090199 Aerospace Engineering not elsewhere classified


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Significant acetylene reduction and therefore N-2 fixation was observed for Lyngbya majuscula only during dark periods, which suggests that oxygenic photosynthesis and N-2 fixation are incompatible processes for this species. Results from a series of batch and continuous-flow-culture reactor studies showed that the specific growth rate and N-2 fixation rate of L, majuscula increased with phosphate (P-PO4) concentration up to a maximum value and thereafter remained constant. The P-PO4 concentrations corresponding to the maximum N-2 fixation and maximum growth rates were -0.27 and -0.18 muM respectively and these values are denoted as the saturation values for N-2 fixation and growth respectively. Regular monitoring studies in Moreton Bay, Queensland, show that concentrations Of P-PO4 generally exceed these saturation values over a large portion of the Bay and therefore, the growth of the bloom-forming L, majuscula is potentially maximised throughout much of the Bay by the elevated P-PO4 concentrations. Results from other studies suggest that the elevated P-PO4 concentrations in the Bay can be largely attributed to discharges from waste-water treatment plants (WWTPs), and thus it is proposed that the control of the growth of L. majuscula in Moreton Bay will require a significant reduction in the P load from the WWTP discharges. If the current strategy of N load reduction for these discharges is maintained in the absence of substantial P load reduction, it is hypothesised that the growth of L, majuscula and other diazotrophs in Moreton Bay will increase in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we proposed a composite depth of penetration (DOP) approach to excluding bottom reflectance in mapping water quality parameters from Landsat thematic mapper (TM) data in the shallow coastal zone of Moreton Bay, Queensland, Australia. Three DOPs were calculated from TM1, TM2 and TM3, in conjunction with bathymetric data, at an accuracy ranging from +/-5% to +/-23%. These depths were used to segment the image into four DOP zones. Sixteen in situ water samples were collected concurrently with the recording of the satellite image. These samples were used to establish regression models for total suspended sediment (TSS) concentration and Secchi depth with respect to a particular DOP zone. Containing identical bands and their transformations for both parameters, the models are linear for TSS concentration, logarithmic for Secchi depth. Based on these models, TSS concentration and Secchi depth were mapped from the satellite image in respective DOP zones. Their mapped patterns are consistent with the in situ observed ones. Spatially, overestimation and underestimation of the parameters are restricted to localised areas but related to the absolute value of the parameters. The mapping was accomplished more accurately using multiple DOP zones than using a single zone in shallower areas. The composite DOP approach enables the mapping to be extended to areas as shallow as <3 m. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the area of dry particle breakage, Discrete Element Method (DEM) simulations have been widely used to analyse the sensitivity of various physical parameters to the behaviour of agglomerates during breakage. This paper looks at the effect of agglomerate shape and structure on the mechanisms and extent of breakage of dry agglomerates under compressive load using DEM simulations. In the simulations, a spherical-shaped agglomerate produced within the DEM code is compared with an irregularly shaped agglomerate, whose structure is that of an actual granule that was characterised with X-ray microtomography (muCT). Both agglomerates have identical particle size distribution, coordination number and surface energy values, with only the agglomerate shape and structure differing between the two. The work here details the breakage behaviour with a number of traditional DEM output parameters (i.e., contact/cluster distributions) with showing vastly different behaviour between the two agglomerates. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In liquid-liquid dispersion systems, the dynamic change of the interfacial properties between the two immiscible liquids plays an important role in both the emulsification process and emulsion stabilization. In this paper, experimentally measured dynamic interfacial tensions of 1-chlorobutane in the aqueous solutions of various random copolymers of polyvinyl acetate and polyvinyl alcohol (PVAA) are presented. Theoretical analyses on these results suggest that the adsorption of the polymer molecules is controlled neither by the bulk diffusion process nor the activation energy barrier for the adsorption but the conformation of polymer molecules. Based on the concept of critical concentration of condensation for polymer adsorption, as well as the observation that the rate at which the dynamic interfacial tension changes does not correlate to the PVAA's ability to stabilize a single drop, it is postulated that the main stabilization mechanism for the PVAAs is by steric hindrance, not the Gibbs-Marangoni effect offered by the small molecule surfactants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Listeria monocytogenes is a food-borne Gram-positive bacterium that is responsible for a variety of infections (worldwide) annually. The organism is able to survive a variety of environmental conditions and stresses, however, the mechanisms by which L. monocytogenes adapts to environmental change are yet to be fully elucidated. An understanding of the mechanism(s) by which L. monocytogenes survives unfavourable environmental conditions will aid in developing new food processing methods to control the organism in foodstuffs. We have utilized a proteomic approach to investigate the response of L. monocytogenes batch cultures to the transition from exponential to stationary growth phase. Proteomic analysis showed that batch cultures of L. monocytogenes perceived stress and began preparations for stationary phase much earlier (approximately A(600) = 0.75, mid-exponential) than predicted by growth characteristics alone. Global analysis of the proteome revealed that the expression levels of more than 50% of all proteins observed changed significantly over a 7-9 h period during this transition phase. We have highlighted ten proteins in particular whose expression levels appear to be important in the early onset of the stationary phase. The significance of these findings in terms of functionality and the mechanistic picture are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a simple and robust transient expression system utilizing the 25 kDa branched cationic polymer polyethylenimine (PEI) as a vehicle to deliver plasmid DNA into suspension-adapted Chinese hamster ovary cells synchronized in G2/M phase of the cell cycle by anti-mitotic microtubule disrupting agents. The PEI-mediated transfection process was optimized with respect to PEI nitrogen to DNA phosphate molar ratio and the plasmid DNA mass to cell ratio using a reporter construct encoding firefly luciferase. Optimal production of luciferase was observed at a PEI N to DNA P ratio of 10:1 and 5 mug DNA 10(6) cells(-1). To manipulate transgene expression at mitosis, we arrested cells in G2/M phase of the cell cycle using the microtubule depolymerizing agent nocodazole. Using secreted human alkaline phosphatase (SEAP) and enhanced green fluorescent protein (eGFP) as reporters we showed that continued inclusion of nocodazole in cell culture medium significantly increased both transfection efficiency and reporter protein production. In the presence of nocodazole, greater than 90% of cells were eGFP positive 24 h post-transfection and qSEAP was increased almost fivefold, doubling total SEAP production. Under optimal conditions for PEI-mediated transfection, transient production of a recombinant chimeric IgG(4) encoded on a single vector was enhanced twofold by nocodazole, a final yield of approximately 5 mug mL(-1) achieved at an initial viable cell density of 1 x 10(6) cells mL(-1). The glycosylation of the recombinant antibody at Asn(297) was not significantly affected by nocodazole during transient production by this method. (C) 2004 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a compact tunable filter based on a novel microfluidic single beam Mach-Zehnder interferometer. The optical path difference occurs during propagation across a fluid-air interface ( meniscus), the inherent mobility of which provides tunability. Optical losses are minimized by optimizing the meniscus shape through surface treatment. Optical spectra are compared to a 3D beam propagation method simulations and good agreement is found. Tunability, low insertion loss and strength of the resonance are well reproduced. The device performance displays a resonance depth of - 28 dB and insertion loss maintained at - 4 dB. (C) 2004 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four mine waste beach longitudinal profile equations are compared theoretically and in statistical analyses of profile data from 64 field and laboratory beaches formed by mine tailings, co-disposed coal mine wastes, and sand. All four equations fit the profile data well. The best performing equation both accounts for particle sorting and satisfies hydraulic constraints, and the combination of assumptions underlying it is considered to best represent the processes occurring on mine waste beaches. Combining these assumptions with the Lacey normal equation leads to a variant of the Manning resistance equation. Features that it is desirable to incorporate in theoretical and numerical models of mine waste beaches are listed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An anaerobic landfill leachate bioreactor was operated with crystalline cellulose and sterile landfill leacbate until a steady state was reached. Cellulose hydrolysis, acidogenesis, and methanogenesis were measured. Microorganisms attached to the cellulose surfaces were hypothesized to be the cellulose hydrolyzers. 16S rRNA gene clone libraries were prepared from this attached fraction and also from the mixed fraction (biomass associated with cellulose particles and in the planktonic phase). Both clone libraries were dominated by Firmicutes phylum sequences (100% of the attached library and 90% of the mixed library), and the majority fell into one of five lineages of the clostridia. Clone group 1 (most closely related to Clostridium stercorarium), clone group 2 (most closely related to Clostridium thermocellum), and clone group 5 (most closely related to Bacteroides cellulosolvens) comprised sequences in Clostridium group III. Clone group 3 sequences were in Clostridium group XIVa (most closely related to Clostridium sp. strain XB90). Clone group 4 sequences were affiliated with a deeply branching clostridial lineage peripherally associated with Clostridium group VI. This monophyletic group comprises a new Clostridium cluster, designated cluster VIa. Specific fluorescence in situ hybridization (FISH) probes for the five groups were designed and synthesized, and it was demonstrated in FISH experiments that bacteria targeted by the probes for clone groups 1, 2, 4, and 5 were very abundant on the surfaces of the cellulose particles and likely the key cellulolytic microorganisms in the landfill bioreactor. The FISH probe for clone group 3 targeted cells in the planktonic phase, and these organisms were hypothesized to be glucose fermenters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adsorption of ethylene and ethane on graphitized thermal carbon black and in slit pores whose walls are composed of graphene layers is studied in detail to investigate the packing efficiency, the two-dimensional critical temperature, and the variation of the isosteric heat of adsorption with loading and temperature. Here we used a Monte Carlo simulation method with a grand canonical Monte Carlo ensemble. A number of two-center Lennard-Jones (LJ) potential models are investigated to study the impact of the choice of potential models in the description of adsorption behavior. We chose two 2C-LJ potential models in our investigation of the (i) UA-TraPPE-LJ model of Martin and Siepmann (J. Phys. Chem. B 1998,102, 25692577) for ethane and Wick et al. (J. Phys. Chem. B 2000,104, 8008-8016) for ethylene and (ii) AUA4-LJ model of Ungerer et al. (J. Chem. Phys. 2000,112, 5499-5510) for ethane and Bourasseau et al. (J. Chem. Phys. 2003, 118, 3020-3034) for ethylene. These models are used to study the adsorption of ethane and ethylene on graphitized thermal carbon black. It is found that the solid-fluid binary interaction parameter is a function of adsorbate and temperature, and the adsorption isotherms and heat of adsorption are well described by both the UA-TraPPE and AUA models, although the UA-TraPPE model performs slightly better. However, the local distributions predicted by these two models are slightly different. These two models are used to explore the two-dimensional condensation for the graphitized thermal carbon black, and these values are 110 K for ethylene and 120 K for ethane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NPT and NVT Monte Carlo simulations are applied to models for methane and water to predict the PVT behaviour of these fluids over a wide range of temperatures and pressures. The potential models examined in this paper have previously been presented in the literature with their specific parameters optimised to fit phase coexistence data. The exponential-6 potential for methane gives generally good prediction of PVT behaviour over the full range of temperature and pressures studied with the only significant deviation from experimental data seen at high temperatures and pressures. The NSPCE water model shows very poor prediction of PVT behaviour, particularly at dense conditions. To improve this. the charge separation in the NSPCE model is varied with density. Improvements for vapour and liquid phase PVT predictions are achieved with this variation. No improvement was found in the prediction of the oxygen-oxygen radial distribution by varying charge separation under dense phase conditions. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we investigate the effect of the solid surface on the fluid-fluid intermolecular potential energy. This modified fluid-fluid interaction energy due to the inducement of a solid surface is used in the grand canonical Monte Carlo (GCMC) simulation of various noble gases, nitrogen, and methane on graphitized thermal carbon black. This effect is such that the effective interaction potential energy between two particles close to surface is less than the potential energy if the solid substrate is not present. With this modification the GCMC simulation results agree extremely well with the experimental data over a wide range of pressures while the simulation results with the unmodified potential energy give rise to a shoulder near the neighborhood of monolayer coverage and the significant overprediction of the second and higher layer coverages. In particular the unmodified GCMC results exhibit very sharp change in those higher layers while the experimental data have a much gradual change in the uptake. We will illustrate this theory with adsorption data of argon, xenon, neon, nitrogen, and methane on graphitized thermal carbon black.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we studied vapor-liquid equilibria (VLE) and adsorption of ethylene on graphitized thermal carbon black and in slit pores whose walls are composed of graphene layers. Simple models of a one-center Lennard-Jones (LJ) potential and a two-center united atom (UA)-LJ potential are investigated to study the impact of the choice of potential models in the description of VLE and adsorption behavior. Here, we used a Monte Carlo simulation method with grand canonical Monte Carlo (GCMC) and Gibbs ensemble Monte Carlo ensembles. The one-center potential model cannot describe adequately the VLE over the practical range of temperature from the triple point to the critical point. On the other hand, the two-center potential model (Wick et al. J. Phys. Chem. B 2000, 104, 8008-8016) performs well in the description of VLE (saturated vapor and liquid densities and vapor pressure) over the wide range of temperature. This UA-LJ model is then used in the study of adsorption of ethylene on graphitized thermal carbon black and in slit pores. Agreement between the GCMC simulation results and the experimental data on graphitized thermal carbon black for moderate temperatures is excellent, demonstrating that the potential of the GCMC method and the proper choice of potential model are essential to investigate adsorption. For slit pores of various sizes, we have found that the behavior of ethylene exhibits a number of features that are not manifested in the study of spherical LJ particles. In particular, the singlet density distribution versus distance across the pore and the angle between the molecular axis and the z direction provide rich information about the way molecules arrange themselves when the pore width is varied. Such an arrangement has been found to be very sensitive to the pore width.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we applied a version of the nonlocal density functional theory (NLDFT) accounting radial and longitudinal density distributions to study the adsorption and desorption of argon in finite as well as infinite cylindrical nanopores at 87.3 K. Features that have not been observed before with one-dimensional NLDFT are observed in the analysis of an inhomogeneous fluid along the axis of a finite cylindrical pore using the two-dimensional version of the NLDFT. The phase transition in pore is not strictly vapor-liquid transition as assumed and observed in the conventional version, but rather it exhibits a much elaborated feature with phase transition being complicated by the formation of solid phase. Depending on the pore size, there are more than one phase transition in the adsorption-desorption isotherm. The solid formation in finite pore has been found to be initiated by the presence of the meniscus. Details of the analysis of the extended version of NLDFT will be discussed in the paper. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach based on the nonlocal density functional theory to determine pore size distribution (PSD) of activated carbons and energetic heterogeneity of the pore wall is proposed. The energetic heterogeneity is modeled with an energy distribution function (EDF), describing the distribution of solid-fluid potential well depth (this distribution is a Dirac delta function for an energetic homogeneous surface). The approach allows simultaneous determining of the PSD (assuming slit shape) and EDF from nitrogen or argon isotherms at their respective boiling points by using a set of local isotherms calculated for a range of pore widths and solid-fluid potential well depths. It is found that the structure of the pore wall surface significantly differs from that of graphitized carbon black. This could be attributed to defects in the crystalline structure of the surface, active oxide centers, finite size of the pore walls (in either wall thickness or pore length), and so forth. Those factors depend on the precursor and the process of carbonization and activation and hence provide a fingerprint for each adsorbent. The approach allows very accurate correlation of the experimental adsorption isotherm and leads to PSDs that are simpler and more realistic than those obtained with the original nonlocal density functional theory.