1000 resultados para óxido de zinco
Resumo:
This work shows that the synthesis by combustion is a prominent alternative to obtain ceramic powders of higher oxides, nanostructured and of high purity, as the ferrites of formulas Co(1-x)Zn(x)Fe2O4 e Ni(1-x)Zn(x)Fe2O4 with x ranging from 0.2 mols, in a range from 0.2 ≤ x ≥ 1.0 mol, that presents magnetic properties in coexistence of ferroelectric and ferrimagnetic states, which can be used in antennas of micro tapes and selective surfaces of low frequency in a range of miniaturized microwaves, without performance loss. The obtainment occurred through the combustion process, followed by appropriate physical processes and ordered to the utilization of the substrate sinterization process, it gave us a ceramic material, of high purity degree in a nanometric scale. The Vibrating Sample Magnetometer (VSM) analysis showed that those ferritic materials presents parameters, as materials hysteresis, that have own behavior of magnetic materials of good quality, in which the magnetization states can be suddenly changed with a relatively small variation of the field intensity, having large applications on the electronics field. The X-ray Diffraction (XRD) analysis of the ceramic powders synthesized at 900 °C, characterize its structural and geometrical properties, the crystallite size and the interplanar spacing. Other analysis were developed, as Scanning Electron Microscopy (SEM), X-ray Fluorescence (XRF), electric permittivity and the tangent loss, in high frequencies, through the equipment ZVB - 14 Vector Network Analyzer 10 MHz-14 GHz, of ROHDE & SCHWART.
Resumo:
Background: Zinc is an essential nutrient that is required for numerous metabolic functions, and zinc deficiency results in growth retardation, cellmediated immune dysfunction, and cognitive impairment. Objective: This study evaluated nutritional assessment methods for zinc supplementation in prepubertal nonzinc- deficient children. Design: We performed a randomised, controlled, triple-blind study. The children were divided into a control group (10% sorbitol, n = 31) and an experimental group (10 mg Zn/day, n = 31) for 3 months. Anthropometric and dietary assessments as well as bioelectrical measurements were performed in all children. Results: Our study showed (1) an increased body mass index for age and an increased phase angle in the experimental group; (2) a positive correlation between nutritional assessment parameters in both groups; (3) increased soft tissue, and mainly fat-free mass, in the body composition of the experimental group, as determined using bioelectrical impedance vector analysis; (4) increased consumption of all nutrients, including zinc, in the experimental group; and (5) an increased serum zinc concentration in both groups (p < 0.0001). Conclusions: Given that a reference for body composition analysis does not exist for intervention studies, longitudinal studies are needed to investigate vector migration during zinc supplementation. These results reinforce the importance of employing multiple techniques to assess the nutritional status of populations.
Resumo:
Background: Zinc is an essential nutrient that is required for numerous metabolic functions, and zinc deficiency results in growth retardation, cellmediated immune dysfunction, and cognitive impairment. Objective: This study evaluated nutritional assessment methods for zinc supplementation in prepubertal nonzinc- deficient children. Design: We performed a randomised, controlled, triple-blind study. The children were divided into a control group (10% sorbitol, n = 31) and an experimental group (10 mg Zn/day, n = 31) for 3 months. Anthropometric and dietary assessments as well as bioelectrical measurements were performed in all children. Results: Our study showed (1) an increased body mass index for age and an increased phase angle in the experimental group; (2) a positive correlation between nutritional assessment parameters in both groups; (3) increased soft tissue, and mainly fat-free mass, in the body composition of the experimental group, as determined using bioelectrical impedance vector analysis; (4) increased consumption of all nutrients, including zinc, in the experimental group; and (5) an increased serum zinc concentration in both groups (p < 0.0001). Conclusions: Given that a reference for body composition analysis does not exist for intervention studies, longitudinal studies are needed to investigate vector migration during zinc supplementation. These results reinforce the importance of employing multiple techniques to assess the nutritional status of populations.
Resumo:
This dissertation presents the development of voltammetric methods to zinc determination in multivitamin commercial samples, talc, and art materials for painting (soft pastel) combining an alkaline extraction with 1.0 mol L-1 NaOH aqueous solution and bismuth modified electrodes. Two electrodes were used to zinc quantification in the samples, bismuth film electrode (BiFE) plated in situ onto glassy carbon and carbon paste electrode chemically modified with strongly acidic ion exchange resin Amberlite® IR 120 and bismuth nanostructures (EPCAmbBi). It was verified that the best concentration of Bi3+ for Bi film deposition onto glassy carbon was 4.0 μmol L-1 using an 0.1 mol L-1 acetate buffer aqueous solution (pH = 4.5) as supporting electrolyte. The best condition to formation of Bi nanostructures in the EPC modified with 10 % Amberlite® IR 120 was the use of 30 s to pre-concentration (open circuit) in 0.5 mmol L-1 Bi3+ aqueous solution (pH 5.5) prepared with supporting electrolyte solution. The obtained analytical curve for Zn2+ using BiFE presented linear range from 0.5 to 5.0 μmol L-1, the limit of detection (LD) was 41 nmol L-1. For EPCAmbBi only one linear range was observed for the analytical curve varying the Zn2+ concentration from 0.05 to 8.2 μmol L-1, LD obtained in this curve it was equal to 10 nmol L-1. The EPCAmbBi presented the most intense and sharp anodic stripping peaks for Zn2+ presenting, therefore, a better voltammetric profile, with sensitivity higher than obtained with the BiFE. Moreover, the EPCAmbBi presented a LD lower than that obtained with the BiFE. Alkaline extraction was an efficient sample pretreatment to extract Zn2+ from solid samples, besides that, this procedure was less susceptible to interferences from Cu2+, since it remains at extracting vessel as insoluble Cu(OH)2. The combination of alkaline extraction with the EPCAmbBi is a simple, fast, efficient and low cost for the zinc determination in pharmaceutical formulations and art materials for painting (soft pastel) samples, which can be employed as a low-cost alternative method to the atomic absorption spectroscopy.
Resumo:
The main objective of this dissertation is the development and processing of novel ionic conducting ceramic materials for use as electrolytes in proton or oxide-ion conducting solid oxide fuel cells. The research aims to develop new processing routes and/or materials offering superior electrochemical behavior, based on nanometric ceramic oxide powders prepared by mechanochemical processes. Protonic ceramic fuel cells (PCFCs) require electrolyte materials with high proton conductivity at intermediate temperatures, 500-700ºC, such as reported for perovskite zirconate oxides containing alkaline earth metal cations. In the current work, BaZrO3 containing 15 mol% of Y (BZY) was chosen as the base material for further study. Despite offering high bulk proton conductivity the widespread application of this material is limited by its poor sinterability and grain growth. Thus, minor additions of oxides of zinc, phosphorous and boron were studied as possible sintering additives. The introduction of ZnO can produce substantially enhanced densification, compared to the un-doped material, lowering the sintering temperature from 1600ºC to 1300ºC. Thus, the current work discusses the best solid solution mechanism to accommodate this sintering additive. Maximum proton conductivity was shown to be obtained in materials where the Zn additive is intentionally adopted into the base perovskite composition. P2O5 additions were shown to be less effective as a sintering additive. The presence of P2O5 was shown to impair grain growth, despite improving densification of BZY for intermediate concentrations in the range 4 – 8 mol%. Interreaction of BZY with P was also shown to have a highly detrimental effect on its electrical transport properties, decreasing both bulk and grain boundary conductivities. The densification behavior of H3BO3 added BaZrO3 (BZO) shows boron to be a very effective sintering aid. Nonetheless, in the yttrium containing analogue, BaZr0.85Y0.15O3- (BZY) the densification behavior with boron additives was shown to be less successful, yielding impaired levels of densification compared to the plain BZY. This phenomenon was shown to be related to the undesirable formation of barium borate compositions of high melting temperatures. In the last section of the work, the emerging oxide-ion conducting materials, (Ba,Sr)GeO3 doped with K, were studied. Work assessed if these materials could be formed by mechanochemical process and the role of the ionic radius of the alkaline earth metal cation on the crystallographic structure, compositional homogeneity and ionic transport. An abrupt jump in oxide-ion conductivity was shown on increasing operation temperature in both the Sr and Ba analogues.
Resumo:
O desenvolvimento da nanotecnologia vem se intensificando nos últimos anos. Sendo que os NM já estão sendo utilizados em vários produtos disponíveis no mercado. Dentre os NM mais utilizados estão os compostos de carbono que embora sejam compostos somente por este elemento podem ter estruturas diferentes que refletem em suas aplicações e possivelmente em seus efeitos. Dentre os NM de carbono, o grafeno e o óxido de grafeno apresentam promissoras características que ampliam sua utilização em diversos segmentos desde eletrônicos até a distribuição de medicamentos. A intensificação da produção e utilização destes NM é acompanhada pela liberação destes nanomateriais no ambiente que pode afetar os organismos vivos, principalmente os animais aquáticos. Entretanto, pouco se sabe sobre os efeitos do óxido de grafeno em crustáceos de importância comercial como é o caso do camarão branco Litopenaeus vannamei. Portanto, a presente dissertação teve como objetivo avaliar os efeitos biológicos da exposição ao óxido de grafeno em diferentes tecidos do camarão.
Resumo:
O uso de plantas com potencial de associação com microrganismos é uma prática frequente em solos contaminados por metais pesados, considerada de baixo custo e ambientalmente correta. O trabalho objetivou avaliar o crescimento do Corymbia citriodora (Hook.) K.D. Hill & L.A.S. Johnson e o efeito da inoculação com Pisolithus microcarpus UFSC-Pt116 em solo contaminado com Zn. O delineamento experimental foi inteiramente casualizado em arranjo fatorial (2 x 6), sendo com e sem inóculo e seis doses de Zn (0, 300, 600, 900, 1200 e 1500 mg kg-1 de solo), com seis repetições. As mudas foram inoculadas e cultivadas durante 90 dias em viveiro. Após 67 dias do transplante definitivo foi avaliado o percentual de colonização ectomicorrízica, a altura de planta, diâmetro do colo, número de folhas, índice de clorofila total, volume radicular, massa seca das folhas, da haste caulinar, radicular e total, relação massa seca aérea/massa seca radicular e a relação altura/diâmetro do colo. O percentual de colonização ectomicorrízica em Corymbia citriodora é estimulado pelo acréscimo de até 1412,21 mg kg-1 de Zn no solo. O Corymbia citriodora é tolerante a adição de até 1500 mg kg-1 de zinco em solo com 81% de argila, mesmo sem a inoculação com Pisolithus microcarpus. A análise de correlação canônica evidencia que a inoculação com P. microcarpus favorece a massa seca total, radicular e da parte aérea de Corymbia citriodora cultivado em solo com 81% de argila contaminada com 600 mg kg-1 de Zn.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Química, 2016.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Tecnologias Química e Biológica, 2016.