997 resultados para (-1)-0 phi


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The continuously influence of human impacts on the seafloor and benthic habitats demands the knowledge of clearly defined habitats to assess recent conditions and to monitor future changes. In this study, a benthic habitat dominated by sorted bedforms was mapped in 2010 using biological, sedimentological and acoustic data. This approach reveals the first interdisciplinary analysis of macrofauna communities in sorted bedforms in the German Bight. The study area covered 4 km², and was located ca. 3.5 km west of island of Sylt. Sorted bedforms formed as sinuous depressions with an east west orientation. Inside these depressions coarse sand covers the seafloor, while outside predominantly fine to medium sand was found. Based on the hydroacoustic data, two seafloor classes were identified. Acoustic class 1 was linked to coarse sand (type A) found inside these sorted bedforms, whereas acoustic class 2 was related to mainly fine to medium sands (type B). The two acoustic classes and sediment types corresponded with the macrofauna communities 1 and 2. The Aoinides paucibranchiata-Goniadella bobretzkii community on coarse sand and the Spiophanes bombyx - Magelona johnstonii community on fine sand. A transitional community 3 (Scoloplos armiger - Ophelia community), with species found in communities 1 and 2, could not be detected by hydroacoustic methods. This study showed the limits of the used acoustic methods, which were unable to detect insignificant differences in the fauna composition of sandy areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The long-term record of glacial/interglacial cycles indicates three major paleoceanographic regimes in the Norwegian Sea. The period since the first major glaciation over Scandinavia at 2.56 Ma is characterized by high-frequency, low-amplitude oscillations of ice-rafted debris inputs, a lowered salinity, and decreased carbonate shell production in surface waters as well as overall strong carbonate dissolution at the sea floor. These conditions indicate a more zonal circulation pattern in the Northern Hemisphere and a relative isolation of surface and bottom waters in the Norwegian Sea. The generally temperate glacial climate was only interrupted by episodic weak intrusions of warm Atlantic waters. These intrusions have been detected in considerable magnitude only at Site 644, and thus are restricted to areas much closer to the Norwegian shelf than during earlier periods. The interval from 1.2 to 0.6 Ma is characterized by an increase in carbonate shell production and a better preservation, as well as a change in frequency patterns of ice-rafted debris inputs. This pattern reflects increasing meridionality in circulation-strengthening contrasts in the Norwegian Sea between strong glaciations and warm interglacials. The past 0.6 Ma reveal high-amplitude oscillations in carbonate records that are dominated by the 100-k.y. frequency pattern. Glacial/interglacial sedimentary cycles in the ODP Leg 104 drill sites reveal a variety of specific dark lithofacies. These dark diamictons reflect intense iceberg rafting in surface waters fed by surges along the front of marine-based parts of the continental ice sheets in the southeastern sector of the Norwegian Sea and are associated with resuspension of reworked fossil organic carbon and strong dissolution at the sea floor. Piling up of huge iceberg barriers along the Iceland-Faeroe-Scotland Ridge might have partially blocked off surface water connections with the North Atlantic during these periods

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study presented in this PhD memory aim at better define and quantify the present timeerosion processes in glacial and proglacial domain. The Glacier des Bossons, situated in theMont-Blanc massif (Haute-Savoie, France), is a good example of a natural and nonanthropizedsystem which allows us to study this topic. This glacier lies on two mainlithologies (the Mont-Blanc granite and the metamorphic bedrock) and this peculiarity is usedto determine the origin of the glacial sediments. The sediments were sampled at the glaciersurface and at the glacier sole and also in the subglacial streams in order to understand themechanisms of mechanical erosion and particle transportation in glacial domain. The study ofthe granulometric distribution and the origin of the sediments were performed by a lithologicanalysis at macro-scale (naked-eye) and a geochemical analysis at micro-scale (U-Pb datingof zircons). These analyses allowed specifying the characteristics of glacial erosion andtransport. (1) the supraglacial sediments derived from the erosion of the rocky valley sides aremainly coarse and the glacial transport does not mix these clasts with those derived from thesub-glacial erosion, except in the lower tongue; (2) the sub-glacial erosion rates areinhomogeneous, erosion under the temperate glacier (0.4-0.8 mm/yr) is at least sixteen timesmore efficient than the erosion under the cold glacier (0.025-0.05 mm/yr); (3) the sub-glacialsediments contain a silty and sandy fraction, resulting from processes of abrasion andcrushing, which is evacuated by sub-glacial streams. The high-resolution temporal acquisitionof hydro-sedimentary data during the 2010 melt season, between the May 5th and theSeptember 17th, allowed defining the seasonal behavior of the hydrologic and sedimentaryfluxes. The sediment exportation occurs mainly during the melt season therefore, quantify thesediment fluxes in the Bossons stream and measure regularly the topographic evolution of thefluvio-glacial system allows to perform a sedimentary balance of the erosion of glacial andnon-glacial domains. During the year 2010, about 3000 tons of sediments were eroded with430 tons settled on the fluvio-glacial system. By analyzing the evolution of suspendedparticulate matter concentrations in the Bossons stream upstream and downstream the fluvioglacialsystem, the part of glacial erosion and non-glacial denudation in the sedimentarybalance could be proportioned. The erosion during the stormy events of the uncoveredmoraines, confining the fluvio-glacial system of the Bossons stream, furnishes at least 59% ofthe sediments exported by the Bossons stream and glacial erosion (41% of the flux) istherefore less efficient comparatively. The long-term evolution of the glacial systems inperiod of global warming would show a sustained erosion of proglacial environments(mountain sides and moraines) recently exposed and therefore an increasing of the detritalfluxes. The Glacier des Bossons protects the summit of the Mont-Blanc, the differentialerosion between zones under the ice and non-glacial could lead to an increase of thedifference of altitude between valleys and summits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geomorphology, geology, stratigraphy, lithology and geochemistry of bottom sediments in the South Ocean are under consideration. Regularities of distribution of iron-manganese nodules, features of occurrence of ore components in the nodules, nodule abundance in bottom sediments have been studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies were made of the glacial geology and provenance of erratic in the Shackleton Range during the German geological expedition GEISHA in 1987/88, especially in the southern and northwestern parts of the range. Evidence that the entire Shackleton Range was once overrun by ice from a southerly to southeasterly direction was provided by subglacial erosional forms (e.g. striations, crescentic gouges, roches moutonnées) and erratics which probably orriginated in the region of the Whichaway Nunataks and the Pensacola Mountains in the southern part of the range. This probably happened during the last major expansion of the Anarctic polar ice sheet, which, on the basis of evidence from other parts of the continent, occurred towards the end of the Miocene. Till and an area of scattered erratics were mapped in the northwestern part of the range. These were deposited during a period of expansion of the Slessor Glacier in the Weichselian (Wisconsian) glacial stage earlier. This expansion was caused by blockage of the glacier by an expanded Filchner ice shelf which resulted from the sinking of the sea level during the Pleistocene, as demonstrated by geological studies in the Weddell Sea and along the coast of the Ross Sea. Studies of the erratics at the edges of glaciers provided information about rock concealed by the glacier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coarse-fraction studies of sediments recovered during ODP Leg 104 are used to reconstruct paleoclimatic and paleoceanographic environments on a time scale of 0.1 to 0.5 m.y. for the past 20 Ma. These investigations suggest that relatively warm climates and isolated deep water conditions prevailed prior to 13.6 Ma and between 5.6-4.8 Ma. The first major deep water outflow from the Norwegian-Greenland Sea into the North Atlantic took place at about 13.6 Ma. Progressive cooling linked to increased deep water renewal in the Norwegian-Greenland Sea appears to have occurred between 13.6-5.6 Ma and 4.8-3.1 Ma. A major onset of ice-rafted debris is recorded at 2.56 Ma. Terrigenous coarsefraction components show important fluctuations with two major peaks during the past 0.8 Ma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains grain size analyses of bottom sediments collected by scientists from the V.P. Zenkovich Laboratory of Shelf and Sea Coasts (P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences) during the Project ''Arctic Shelf of the Eurasia in the Late Quaternary'' in a number of expeditions to the Barents, Kara, East Siberian and Chukchi Seas on board the research vessels R/V Professor Shtokman, H/V Dmitry Laptev, H/V Malygin, and icebreaker Georgy Sedov since 1978. The analyses have been carried out according to the methods published by Petelin (1967) in the Analytical Laboratory of the P.P. Shirshov Institute of Oceanology. Archiving and electronic publication was performed through a data rescue by Evgeny Gurvich in 2003.