928 resultados para "Conditioned donations"
Resumo:
Flood extent maps derived from SAR images are a useful source of data for validating hydraulic models of river flood flow. The accuracy of such maps is reduced by a number of factors, including changes in returns from the water surface caused by different meteorological conditions and the presence of emergent vegetation. The paper describes how improved accuracy can be achieved by modifying an existing flood extent delineation algorithm to use airborne laser altimetry (LiDAR) as well as SAR data. The LiDAR data provide an additional constraint that waterline (land-water boundary) heights should vary smoothly along the flooded reach. The method was tested on a SAR image of a flood for which contemporaneous aerial photography existed, together with LiDAR data of the un-flooded reach. Waterline heights of the SAR flood extent conditioned on both SAR and LiDAR data matched the corresponding heights from the aerial photo waterline significantly more closely than those from the SAR flood extent conditioned only on SAR data.
Resumo:
1 Plant species differ in their capacity to influence soil organic matter, soil nutrient availability and the composition of soil microbial communities. Their influences on soil properties result in net positive or negative feedback effects, which influence plant performance and plant community composition. 2 For two grassland systems, one on a sandy soil in the Netherlands and one on a chalk soil in the United Kingdom, we investigated how individual plant species grown in monocultures changed abiotic and biotic soil conditions. Then, we determined feedback effects of these soils to plants of the same or different species. Feedback effects were analysed at the level of plant species and plant taxonomic groups (grasses vs. forbs). 3 In the sandy soils, plant species differed in their effects on soil chemical properties, in particular potassium levels, but PLFA (phospholipid fatty acid) signatures of the soil microbial community did not differ between plant species. The effects of soil chemical properties were even greater when grasses and forbs were compared, especially because potassium levels were lower in grass monocultures. 4 In the chalk soil, there were no effects of plant species on soil chemical properties, but PLFA profiles differed significantly between soils from different monocultures. PLFA profiles differed between species, rather than between grasses and forbs. 5 In the feedback experiment, all plant species in sandy soils grew less vigorously in soils conditioned by grasses than in soils conditioned by forbs. These effects correlated significantly with soil chemical properties. None of the seven plant species showed significant differences between performance in soil conditioned by the same vs. other plant species. 6 In the chalk soil, Sanguisorba minor and in particular Briza media performed best in soil collected from conspecifics, while Bromus erectus performed best in soil from heterospecifics. There was no distinctive pattern between soils collected from forb and grass monocultures, and plant performance could not be related to soil chemical properties or PLFA signatures. 7 Our study shows that mechanisms of plant-soil feedback can depend on plant species, plant taxonomic (or functional) groups and site-specific differences in abiotic and biotic soil properties. Understanding how plant species can influence their rhizosphere, and how other plant species respond to these changes, will greatly enhance our understanding of the functioning and stability of ecosystems.
Resumo:
The offspring of parasitoids, Aphidius colemani Viereck, reared on Brussels sprouts and emerging from Myzus persicae Sulzer on a fully defined artificial diet, show no preferences in a four-way olfactometer, either for the odour of the diet, the odour of Brussels sprouts, or the odour of two other crucifers (cabbage and Chinese cabbage). A similar lack of odour preferences is shown when the host aphids are exposed for parasitization (for 48 h) on cabbage, Chinese cabbage or wheat. However, if parasitization occurs on Brussels sprouts, a weak but statistically highly significant response to Brussels sprout odour is observed. Although as many as 30-35% of the parasitoids show no response to any odour, another 35% respond positively to the odour of Brussels sprout compared with responses to the odours of cabbage, Chinese cabbage or wheat of only approximately 10%. An analagous result is obtained when the parent parasitoids are reared on cabbage. In this case, significant positive responses of their offspring to cabbage odour occur only if the 48-h parasitization has occurred also on cabbage. However, with parasitoids from Brussels sprouts parasitizing the aphids for 48 h also on Brussels sprouts, the offspring subsequently emerging from pupae excised from the mummies show no preference for Brussels sprout odour. Thus, although the Brussels sprout cue had been experienced early in the development of the parasitoids, they only become conditioned to it when emerging from the mummy. Both male and female parasitoids respond very similarly in all experiments. It is proposed that the chemical cue (probably glucosinolates in these experiments) is most likely in the silk surrounding the parasitoid pupa, and that the mother may leave the chemical in or around the egg at oviposition, inducing chemical defences in her offspring to the secondary plant compounds that the offspring are likely to encounter.
Resumo:
The impact of environment on the germination biology of the parasite was studied in the laboratory with seeds conditioned at various water potentials, urea concentrations and at 17.5 to 37.5°C for up to 133 days. Maximum germination was observed at 20 to 25°C. Water stress and urea suppressed maximum germination. The final percentage germination response to period of conditioning showed a non-linear relationship and suggests the release of seeds from dormancy during the initial period and later on dormancy induction. Germination percentage increased with increase in conditioning period to a threshold and remained stable for variable periods followed by a decline with further extension of conditioning time. The decline in germination finally terminated in zero germination in most treatments before the end of experimentation. The investigated factors of temperature, water potential and urea showed clear effects on the expression of dormancy pattern of the parasite. The effects of water potential and urea were viewed as modifying a primary response of seeds to temperature during conditioning. The changes in germinability potential during conditioning were consistent with the hypothesis that dormancy periods are normally distributed within seed populations and that loss of primary dormancy precedes induction of secondary dormancy. Hence an additive mathematical model of loss of primary dormancy and induction of secondary as affected by environment was developed as: G = {[Φ-1 (Kp+ (po+pnN+pwW) (T-Tb) t)]-[Φ-1 (Ks+ ((swW+sa)+sorT)t)]}[Φ-1(aT2+bT+c+cwW)].
Resumo:
Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.
Resumo:
Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.
Resumo:
The existing literature on lean construction is overwhelmingly prescriptive with little recognition of the social and politicised nature of the diffusion process. The prevailing production-engineering perspective too often assumes that organizations are unitary entities where all parties strive for the common goal of 'improved performance'. An alternative perspective is developed that considers the diffusion of lean construction across contested pluralistic arenas. Different actors mobilize different storylines to suit their own localized political agendas. Multiple storylines of lean construction continuously compete for attention with other management fashions. The conceptualization and enactment of lean construction therefore differs across contexts, often taking on different manifestations from those envisaged. However, such localized enactments of lean construction are patterned and conditioned by pre-existing social and economic structures over which individual managers have limited influence. Taking a broader view, 'leanness' can be conceptualized in terms of a quest for structural flexibility involving restructuring, downsizing and outsourcing. From this perspective, the UK construction industry can be seen to have embarked upon leaner ways of working in the mid-1970s, long before the terminology of lean thinking came into vogue. Semi-structured interviews with construction sector policy-makers provide empirical support for the view that lean construction is a multifaceted concept that defies universal definition.
Resumo:
This paper presents an investigation of the natural ventilation cooling potential (NVCP) of office buildings in the five generally recognised climate zones in China using the Thermal Resistance Ventilation (TRV) model, which is a simplified, coupled, thermal and airflow model. The acceptable operative temperature for naturally conditioned space supplied by the ASHARE Standard 55-2004 has been used for the comfort temperature setting. Dynamic simulations for a typical office room in the five representative cities, which are Harbin, Beijing, Shanghai, Kunming and Guangzhou, have been carried out. The study demonstrates that the NVCP depends on the multiple impacts of climate, the building's thermal characteristics, internal gains, ventilation profiles and regimes. The work shows how the simplified method can be used to generate detailed, indoor, operative temperature data based on the various building conditions and control profiles which are used to investigate the NVCP at the strategic design stage. The simulation results presented in this paper can be used as a reference guideline for natural ventilation design in China.
Resumo:
The aetiology of apoE4 genotype-Alzheimer's disease (AD) association are complex. The current study emphasizes the impact of apoE genotype and potential beneficial effects of vitamin E (VE) in relation to oxidative stress. Agonist induced neuronal cell death was examined 1) in the presence of conditioned media containing equal amounts of apoE3 or apoE4 obtained from stably transfected macrophages, and 2) after pretreatment with alpha- and gamma-tocopherol, and -tocotrienol. ApoE3 and apoE4 transgenic mice were fed a diet poor or rich in VE to study the interplay of both apoE genotype and VE status, on membrane lipid peroxidation, antioxidative enzyme activity and glutathione levels in the brain. Cytotoxicity of hydrogen peroxide and glutamate was higher in neuronal cells cultured with apoE4 than apoE3 conditioned media. VE pre-treatment of neurons counteracted the cytotoxicity of a peroxide challenge but not of nitric oxide. No significant effects of apoE genotype or VE supplementation were observed on lipid peroxidation or antioxidative status in the brain of apoE3 and apoE4 mice. VE protects against oxidative insults in vitro, however, no differences in brain oxidative status were observed in mice. Unlike in cultured cells, apoE4 may not contribute to higher neuronal oxidative stress in the brain of young targeted replacement mice.
Resumo:
Four hull-less barley samples were milled on a Buhler MLU 202 laboratory mill and individual and combined milling fractions were characterized. The best milling performance was obtained when the samples were conditioned to 14.3% moisture. Yields were 37-48% for straight-run flour, 47-56% for shorts, and 5-8% for bran. The beta-glucan contents of the straight-run white flours were 1.6-2.1%, of which approximate to49% was water-extractable. The arabinoxylan contents were 1.2-1.5%, of which approximate to17% was water-extractable. Shorts and bran fractions contained more beta-glucan (4.2-5.8% and 3.0-4.7%, respectively) and arabinoxylan (6.1-7.7% and 8.1-11.8%, respectively) than the white flours. For those fractions, beta-glucan extractability was high (58.5 and 52.3%, respectively), whereas arabinoxylan extractability was very low (approximate to6.5 and 2.0%, respectively). The straight-run white flours had low alpha-amylase, beta-glucanase, and endoxylanase activities. The highest alpha-amylase activity was found in the shorts fractions and the highest beta-glucanase and endoxylanase activities were generally found in the bran fractions. Endoxylanase inhibitor activities were low in the white flours and highest in the shorts fractions. High flavanoid, tocopherol, and tocotrienol contents were found in bran and shorts fractions.
Resumo:
A generalized or tunable-kernel model is proposed for probability density function estimation based on an orthogonal forward regression procedure. Each stage of the density estimation process determines a tunable kernel, namely, its center vector and diagonal covariance matrix, by minimizing a leave-one-out test criterion. The kernel mixing weights of the constructed sparse density estimate are finally updated using the multiplicative nonnegative quadratic programming algorithm to ensure the nonnegative and unity constraints, and this weight-updating process additionally has the desired ability to further reduce the model size. The proposed tunable-kernel model has advantages, in terms of model generalization capability and model sparsity, over the standard fixed-kernel model that restricts kernel centers to the training data points and employs a single common kernel variance for every kernel. On the other hand, it does not optimize all the model parameters together and thus avoids the problems of high-dimensional ill-conditioned nonlinear optimization associated with the conventional finite mixture model. Several examples are included to demonstrate the ability of the proposed novel tunable-kernel model to effectively construct a very compact density estimate accurately.
Resumo:
Several non-orthogonal space-time block coding (NO-STBC) schemes have recently been proposed to achieve full rate transmission. Some of these schemes, however, suffer from weak robustness: their channel matrices will become ill conditioned in the case of highly correlated channels (HCC). To address this issue, this paper derives a family of robust NO-STBC schemes for four Tx antennas based on the worst case of HCC. These codes turned out to be a superset of Jafarkhani's quasi-orthogonal STBC codes. A computationally affordable linear decoder is also proposed. Although these codes achieve a similar performance to the non-robust schemes under normal channel conditions, they offer a strong robustness against HCC (although possibly yielding a poorer performance). Finally, computer simulations are presented to verify the algorithm design.
Resumo:
Numerical weather prediction (NWP) centres use numerical models of the atmospheric flow to forecast future weather states from an estimate of the current state. Variational data assimilation (VAR) is used commonly to determine an optimal state estimate that miminizes the errors between observations of the dynamical system and model predictions of the flow. The rate of convergence of the VAR scheme and the sensitivity of the solution to errors in the data are dependent on the condition number of the Hessian of the variational least-squares objective function. The traditional formulation of VAR is ill-conditioned and hence leads to slow convergence and an inaccurate solution. In practice, operational NWP centres precondition the system via a control variable transform to reduce the condition number of the Hessian. In this paper we investigate the conditioning of VAR for a single, periodic, spatially-distributed state variable. We present theoretical bounds on the condition number of the original and preconditioned Hessians and hence demonstrate the improvement produced by the preconditioning. We also investigate theoretically the effect of observation position and error variance on the preconditioned system and show that the problem becomes more ill-conditioned with increasingly dense and accurate observations. Finally, we confirm the theoretical results in an operational setting by giving experimental results from the Met Office variational system.
Resumo:
Air distribution systems are one of the major electrical energy consumers in air-conditioned commercial buildings which maintain comfortable indoor thermal environment and air quality by supplying specified amounts of treated air into different zones. The sizes of air distribution lines affect energy efficiency of the distribution systems. Equal friction and static regain are two well-known approaches for sizing the air distribution lines. Concerns to life cycle cost of the air distribution systems, T and IPS methods have been developed. Hitherto, all these methods are based on static design conditions. Therefore, dynamic performance of the system has not been yet addressed; whereas, the air distribution systems are mostly performed in dynamic rather than static conditions. Besides, none of the existing methods consider any aspects of thermal comfort and environmental impacts. This study attempts to investigate the existing methods for sizing of the air distribution systems and proposes a dynamic approach for size optimisation of the air distribution lines by taking into account optimisation criteria such as economic aspects, environmental impacts and technical performance. These criteria have been respectively addressed through whole life costing analysis, life cycle assessment and deviation from set-point temperature of different zones. Integration of these criteria into the TRNSYS software produces a novel dynamic optimisation approach for duct sizing. Due to the integration of different criteria into a well- known performance evaluation software, this approach could be easily adopted by designers in busy nature of design. Comparison of this integrated approach with the existing methods reveals that under the defined criteria, system performance is improved up to 15% compared to the existing methods. This approach is interpreted as a significant step forward reaching to the net zero emission building in future.
Resumo:
We propose and analyse a class of evolving network models suitable for describing a dynamic topological structure. Applications include telecommunication, on-line social behaviour and information processing in neuroscience. We model the evolving network as a discrete time Markov chain, and study a very general framework where, conditioned on the current state, edges appear or disappear independently at the next timestep. We show how to exploit symmetries in the microscopic, localized rules in order to obtain conjugate classes of random graphs that simplify analysis and calibration of a model. Further, we develop a mean field theory for describing network evolution. For a simple but realistic scenario incorporating the triadic closure effect that has been empirically observed by social scientists (friends of friends tend to become friends), the mean field theory predicts bistable dynamics, and computational results confirm this prediction. We also discuss the calibration issue for a set of real cell phone data, and find support for a stratified model, where individuals are assigned to one of two distinct groups having different within-group and across-group dynamics.