966 resultados para water-stress


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used a controlled CO2 perturbation experiment to test hypotheses about changes in diversity, composition and structure of soft-bottom intertidal macrobenthic assemblages, under realistic and locally relevant scenarios of seawater acidification. Patches of undisturbed sediment were collected from 2 types of intertidal sedimentary habitat in the Ria Formosa coastal lagoon (South Portugal) and exposed to 2 levels of seawater acidification (pH reduced by 0.3 and 0.6 units) and 1 unmanipulated (control) level. After 75 d the assemblages differed significantly between the 2 types of sediment and between field controls and the ex situ treatments, but not among the 3 pH levels tested. The naturally high values of total alkalinity buffered seawater from the changes imposed on carbonate chemistry and may have contributed to offsetting acidification at the local scale. Observed differences on biota were strongly related to the organic matter content and grain-size of the sediments, particularly to the fractions of medium and coarse sand. Soft-bottom intertidal macrofauna was significantly affected by the stress of being held in an artificial environment, but not by CO2-induced seawater acidification. Given the previously observed variations in the sensitivities of marine organisms to seawater acidification, direct extrapolations of the present findings to different regions or other types of assemblages do not seem advisable. However, the contribution of ex situ studies to the assessment of ecosystem-level responses to environmental disturbances could generally be improved by incorporating adequate field controls in the experimental design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental transitions leading to spatial physical-chemical gradients are of ecological and evolutionary interest because they are able to induce variations in phenotypic plasticity. Thus, the adaptive variability to low-pH river discharges may drive divergent stress responses [ingestion rates (IR) and expression of stress-related genes such as Heat shock protein 70 (Hsp70) and Ferritin] in the neritic copepod Acartia tonsa facing changes in the marine chemistry associated to ocean acidification (OA). These responses were tested in copepod populations inhabiting two environments with contrasting carbonate system parameters (an estuarine versus coastal area) in the Southern Pacific Ocean, and assessing an in situ and 96-h experimental incubation under conditions of high pressure of CO2 (PCO2 1200 ppm). Adaptive variability was a determining factor in driving variability of copepods' responses. Thus, the food-rich but colder and corrosive estuary induced a traits trade-off expressed as depressed IR under in situ conditions. However, this experience allowed these copepods to tolerate further exposure to high PCO2 levels better, as their IRs were on average 43% higher than those of the coastal individuals. Indeed, expression of both the Hsp70 and Ferritin genes in coastal copepods was significantly higher after acclimation to high PCO2 conditions. Along with other recent evidence, our findings confirm that adaptation to local fluctuations in seawater pH seems to play a significant role in the response of planktonic populations to OA-associated conditions. Facing the environmental threat represented by the inter-play between multiple drivers of climate change, this biological feature should be examined in detail as a potential tool for risk mitigation policies in coastal management arrangements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large asymmetric bed forms commonly develop in rivers. The turbulence associated with flow separation that develops over their steep lee side is responsible for the form shear stress which can represent a substantial part of total shear stress in rivers. This paper uses the Delft3D modeling system to investigate the effects of bed form geometry and forcing conditions on flow separation length and associated turbulence, and bed form shear stress over angle-of-repose (30 lee side angle) bed forms. The model was validated with lab measurements that showed sufficient agreement to be used for a systematic analysis. The influence of flow velocity, bed roughness, relative height (bed form height/water depth), and aspect ratio (bed form height/length) on the variations of the normalized length of the flow separation zone, the extent of the wake region (where the turbulent kinetic energy (TKE) was more than 70% of the maximum TKE), the average TKE within the wake region and the form shear stress were investigated. Form shear stress was found not to scale with the size of the flow separation zone but to be related to the product of the normalized extent of the wake region (extent of the wake region/extent of water body above the bed form) and the average TKE within the wake region. The results add to understanding of the hydrodynamics of bed forms and may be used for the development of better parameterizations of smallscale processes for application in large-scale studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acidification of the World's oceans may directly impact reproduction, performance and shell formation of marine calcifying organisms. In addition, since shell production is costly and stress in general draws on an organism's energy budget, shell growth and stability of bivalves should indirectly be affected by environmental stress. The aim of this study was to investigate whether a combination of warming and acidification leads to increased physiological stress (lipofuscin accumulation and mortality) and affects the performance [shell growth, shell breaking force, condition index (Ci)] of young Mytilus edulis and Arctica islandica from the Baltic Sea. We cultured the bivalves in a fully-crossed 2-factorial experimental setup (seawater (sw) pCO2 levels "low", "medium" and "high" for both species, temperature levels 7.5, 10, 16, 20 and 25 °C for M. edulis and 7.5, 10 and 16 °C for A. islandica) for 13 weeks in summer. Mytilus edulis and A. islandica appeared to tolerate wide ranges of sw temperature and pCO2. Lipofuscin accumulation of M. edulis increased with temperature while the Ci decreased, but shell growth of the mussels only sharply decreased while its mortality increased between 20 and 25 °C. In A. islandica, lipofuscin accumulation increased with temperature, whereas the Ci, shell growth and shell breaking force decreased. The pCO2 treatment had only marginal effects on the measured parameters of both bivalve species. Shell growth of both bivalve species was not impaired by under-saturation of the sea water with respect to aragonite and calcite. Furthermore, independently of water temperatures shell breaking force of both species and shell growth of A. islandica remained unaffected by the applied elevated sw pCO2 for several months. Only at the highest temperature (25 °C), growth arrest of M. edulis was recorded at the high sw pCO2 treatment and the Ci of M. edulis was slightly higher at the medium sw pCO2 treatment than at the low and high sw pCO2 treatments. The only effect of elevated sw pCO2 on A. islandica was an increase in lipofuscin accumulation at the high sw pCO2 treatment compared to the medium sw pCO2 treatment. Our results show that, despite this robustness, growth of both M. edulis and A. islandica can be reduced if sw temperatures remain high for several weeks in summer. As large body size constitutes an escape from crab and sea star predation, this can make bivalves presumably more vulnerable to predation with possible negative consequences on population growth. In M. edulis, but not in A. islandica, this effect is amplified by elevated sw pCO2. We follow that combined effects of elevated sw pCO2 and ocean warming might cause shifts in future Western Baltic Sea community structures and ecosystem services; however, only if predators or other interacting species do not suffer as strong from these stressors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In situ calcification measurements tested the hypothesis that corals from environments (Florida Bay, USA) that naturally experience large swings in pCO2 and pH will be tolerant or less sensitive to ocean acidification than species from laboratory experiments with less variable carbonate chemistry. The pCO2 in Florida Bay varies from summer to winter by several hundred ppm roughly comparable to the increase predicted by the end of the century. Rates of net photosynthesis and calcification of two stress-tolerant coral species, Siderastrea radians and Solenastrea hyades, were measured under the prevailing ambient chemical conditions and under conditions amended to simulate a pH drop of 0.1-0.2 units at bimonthly intervals over a 2-yr period. Net photosynthesis was not changed by the elevation in pCO2 and drop in pH; however, calcification declined by 52 and 50 % per unit decrease in saturation state, respectively. These results indicate that the calcification rates of S. radians and S. hyades are just as sensitive to a reduction in saturation state as coral species that have been previously studied. In other words, stress tolerance to temperature and salinity extremes as well as regular exposure to large swings in pCO2 and pH did not make them any less sensitive to ocean acidification. These two species likely survive in Florida Bay in part because they devote proportionately less energy to calcification than most other species and the average saturation state is elevated relative to that of nearby offshore water due to high rates of primary production by seagrasses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El estudio desarrollado en este trabajo de tesis se centra en la modelización numérica de la fase de propagación de los deslizamientos rápidos de ladera a través del método sin malla Smoothed Particle Hydrodynamics (SPH). Este método tiene la gran ventaja de permitir el análisis de problemas de grandes deformaciones evitando operaciones costosas de remallado como en el caso de métodos numéricos con mallas tal como el método de los Elementos Finitos. En esta tesis, particular atención viene dada al rol que la reología y la presión de poros desempeñan durante estos eventos. El modelo matemático utilizado se basa en la formulación de Biot-Zienkiewicz v - pw, que representa el comportamiento, expresado en términos de velocidad del esqueleto sólido y presiones de poros, de la mezcla de partículas sólidas en un medio saturado. Las ecuaciones que gobiernan el problema son: • la ecuación de balance de masa de la fase del fluido intersticial, • la ecuación de balance de momento de la fase del fluido intersticial y de la mezcla, • la ecuación constitutiva y • una ecuación cinemática. Debido a sus propiedades geométricas, los deslizamientos de ladera se caracterizan por tener una profundidad muy pequeña frente a su longitud y a su anchura, y, consecuentemente, el modelo matemático mencionado anteriormente se puede simplificar integrando en profundidad las ecuaciones, pasando de un modelo 3D a 2D, el cual presenta una combinación excelente de precisión, sencillez y costes computacionales. El modelo propuesto en este trabajo se diferencia de los modelos integrados en profundidad existentes por incorporar un ulterior modelo capaz de proveer información sobre la presión del fluido intersticial a cada paso computacional de la propagación del deslizamiento. En una manera muy eficaz, la evolución de los perfiles de la presión de poros está numéricamente resuelta a través de un esquema explicito de Diferencias Finitas a cada nodo SPH. Este nuevo enfoque es capaz de tener en cuenta la variación de presión de poros debida a cambios de altura, de consolidación vertical o de cambios en las tensiones totales. Con respecto al comportamiento constitutivo, uno de los problemas principales al modelizar numéricamente deslizamientos rápidos de ladera está en la dificultad de simular con la misma ley constitutiva o reológica la transición de la fase de iniciación, donde el material se comporta como un sólido, a la fase de propagación donde el material se comporta como un fluido. En este trabajo de tesis, se propone un nuevo modelo reológico basado en el modelo viscoplástico de Perzyna, pensando a la viscoplasticidad como a la llave para poder simular tanto la fase de iniciación como la de propagación con el mismo modelo constitutivo. Con el fin de validar el modelo matemático y numérico se reproducen tanto ejemplos de referencia con solución analítica como experimentos de laboratorio. Finalmente, el modelo se aplica a casos reales, con especial atención al caso del deslizamiento de 1966 en Aberfan, mostrando como los resultados obtenidos simulan con éxito estos tipos de riesgos naturales. The study developed in this thesis focuses on the modelling of landslides propagation with the Smoothed Particle Hydrodynamics (SPH) meshless method which has the great advantage of allowing to deal with large deformation problems by avoiding expensive remeshing operations as happens for mesh methods such as, for example, the Finite Element Method. In this thesis, special attention is given to the role played by rheology and pore water pressure during these natural hazards. The mathematical framework used is based on the v - pw Biot-Zienkiewicz formulation, which represents the behaviour, formulated in terms of soil skeleton velocity and pore water pressure, of the mixture of solid particles and pore water in a saturated media. The governing equations are: • the mass balance equation for the pore water phase, • the momentum balance equation for the pore water phase and the mixture, • the constitutive equation and • a kinematic equation. Landslides, due to their shape and geometrical properties, have small depths in comparison with their length or width, therefore, the mathematical model aforementioned can then be simplified by depth integrating the equations, switching from a 3D to a 2D model, which presents an excellent combination of accuracy, computational costs and simplicity. The proposed model differs from previous depth integrated models by including a sub-model able to provide information on pore water pressure profiles at each computational step of the landslide's propagation. In an effective way, the evolution of the pore water pressure profiles is numerically solved through a set of 1D Finite Differences explicit scheme at each SPH node. This new approach is able to take into account the variation of the pore water pressure due to changes of height, vertical consolidation or changes of total stress. Concerning the constitutive behaviour, one of the main issues when modelling fast landslides is the difficulty to simulate with the same constitutive or rheological model the transition from the triggering phase, where the landslide behaves like a solid, to the propagation phase, where the landslide behaves in a fluid-like manner. In this work thesis, a new rheological model is proposed, based on the Perzyna viscoplastic model, thinking of viscoplasticity as the key to close the gap between the triggering and the propagation phase. In order to validate the mathematical model and the numerical approach, benchmarks and laboratory experiments are reproduced and compared to analytical solutions when possible. Finally, applications to real cases are studied, with particular attention paid to the Aberfan flowslide of 1966, showing how the mathematical model accurately and successfully simulate these kind of natural hazards.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the practice of “osmotic stress,” the effect of excluded cosolvents on a biochemical equilibrium is interpreted as the number of water molecules participating in the reaction. This action is attributed to lowering of solvent water activity by the cosolvent. This concept of osmotic stress in disperse solution is erroneous: (i) A cosolvent cannot be both excluded and inert, i.e., noninteracting, because exclusion requires a positive free energy change; (ii) a decrease in water activity alone by addition of solute cannot affect an equilibrium when the reacting surface is in contact with the solvent; and (iii) osmotic stress in disperse solution is a restricted case of preferential interactions; the reaction is driven by the free energy of cosolvent exclusion, and the derived number of water molecules is solely a measure of the mutual perturbations of the chemical potentials of the cosolvent and the protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most remarkable structural aspects of Scapharca dimeric hemoglobin is the disruption of a very well-ordered water cluster at the subunit interface upon ligand binding. We have explored the role of these crystallographically observed water molecules by site-directed mutagenesis and osmotic stress techniques. The isosteric mutation of Thr-72 → Val in the interface increases oxygen affinity more than 40-fold with a surprising enhancement of cooperativity. The only significant structural effect of this mutation is to destabilize two ordered water molecules in the deoxy interface. Wild-type Scapharca hemoglobin is strongly sensitive to osmotic conditions. Upon addition of glycerol, striking changes in Raman spectrum of the deoxy form are observed that indicate a transition toward the liganded form. Increased osmotic pressure, which lowers the oxygen affinity in human hemoglobin, raises the oxygen affinity of Scapharca hemoglobin regardless of whether the solute is glycerol, glucose, or sucrose. Analysis of these results provides an estimate of six water molecules lost upon oxygen binding to the dimer, in good agreement with eight predicted from crystal structures. These experiments suggest that the observed cluster of interfacial water molecules plays a crucial role in communication between subunits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquaporin-1 (AQP1) water channel protein expression is increased by hypertonic stress. The contribution of changes in protein stability to hypertonic induction of AQP1 have not been described. Incubation of BALB/c fibroblasts spontaneously expressing AQP1 with proteasome inhibitors increased AQP1 expression, suggesting basal proteasome-dependent degradation of the protein. Degradation by the proteasome is thought to be triggered by polyubiquitination of a target protein. To determine whether AQP1 is ubiquitinated, immunoprecipitation with anti-AQP1 antibodies was performed, and the resultant samples were probed by protein immunoblot for the presence of ubiquitin. Immunoblots demonstrated ubiquitination of AQP1 under control conditions that increased after treatment with proteasome inhibitors (MG132, lactacystin). Exposure of cells to hypertonic medium for as little as 4 h decreased ubiquitination of AQP1, an effect that persisted through 24 h in hypertonic medium. Using metabolic labeling with [35S]methionine, the half-life of AQP1 protein under isotonic conditions was found to be <4 h. AQP1 protein half-life was markedly increased by exposure of cells to hypertonic medium. These observations provide evidence that aquaporins are a target for ubiquitination and proteasome-dependent degradation. Additionally, these studies demonstrate that reduced protein ubiquitination and increased protein stability lead to increased levels of AQP1 expression during hypertonic stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To confer abscisic acid (ABA) and/or stress-inducible gene expression, an ABA-response complex (ABRC1) from the barley (Hordeum vulgare L.) HVA22 gene was fused to four different lengths of the 5′ region from the rice (Oryza sativa L.) Act1 gene. Transient assay of β-glucuronidase (GUS) activity in barley aleurone cells shows that, coupled with ABRC1, the shortest minimal promoter (Act1–100P) gives both the greatest induction and the highest level of absolute activity following ABA treatment. Two plasmids with one or four copies of ABRC1 combined with the same Act1–100P and HVA22(I) of barley HVA22 were constructed and used for stable expression of uidA in transgenic rice plants. Three Southern blot-positive lines with the correct hybridization pattern for each construct were obtained. Northern analysis indicated that uidA expression is induced by ABA, water-deficit, and NaCl treatments. GUS activity assays in the transgenic plants confirmed that the induction of GUS activity varies from 3- to 8-fold with different treatments or in different rice tissues, and that transgenic rice plants harboring four copies of ABRC1 show 50% to 200% higher absolute GUS activity both before and after treatments than those with one copy of ABRC1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Choline monooxygenase (CMO) catalyzes the committing step in the synthesis of glycine betaine, an osmoprotectant accumulated by many plants in response to salinity and drought. To investigate how these stresses affect CMO expression, a spinach (Spinacia oleracea L., Chenopodiaceae) probe was used to isolate CMO cDNAs from sugar beet (Beta vulgaris L., Chenopodiaceae), a salt- and drought-tolerant crop. The deduced beet CMO amino acid sequence comprised a transit peptide and a 381-residue mature peptide that was 84% identical (97% similar) to that of spinach and that showed the same consensus motif for coordinating a Rieske-type [2Fe-2S] cluster. A mononuclear Fe-binding motif was also present. When water was withheld, leaf relative water content declined to 59% and the levels of CMO mRNA, protein, and enzyme activity rose 3- to 5-fold; rewatering reversed these changes. After gradual salinization (NaCl:CaCl2 = 5.7:1, mol/mol), CMO mRNA, protein, and enzyme levels in leaves increased 3- to 7-fold at 400 mm salt, and returned to uninduced levels when salt was removed. Beet roots also expressed CMO, most strongly when salinized. Salt-inducible CMO mRNA, protein, and enzyme activity were readily detected in leaves of Amaranthus caudatus L. (Amaranthaceae). These data show that CMO most probably has a mononuclear Fe center, is inducibly expressed in roots as well as in leaves of Chenopodiaceae, and is not unique to this family.