899 resultados para uncertanin nonholonomic dynamic system
Resumo:
The INtegrated CAtchment (INCA) model has been developed to simulate the impact of mine discharges on river systems. The model accounts for the key kinetic chemical processes operating as well as the dilution, mixing and redistribution of pollutants in rivers downstream of mine discharges or acid rock drainage sites. The model is dynamic and simulates the day-to-day behaviour of hydrology and eight metals (cadmium, mercury, copper, zinc, lead, arsenic, manganese and chromium) as well as cyanide and ammonia. The model is semi-distributed and can simulate catchments, sub-catchment and in-stream river behaviour. The model has been applied to the Roia Montan Mine in Transylvania, Romania, and used to assess the impacts of old mine adits on the local catchments as well as on the downstream Aries and Mures river system. The question of mine restoration is investigated and a set of clean-up scenarios investigated. It is shown that the planned restoration will generate a much improved water quality from the mine and also alleviate the metal pollution of the river system.
Resumo:
Soil organic carbon (SOC) plays a vital role in ecosystem function, determining soil fertility, water holding capacity and susceptibility to land degradation. In addition, SOC is related to atmospheric CO, levels with soils having the potential for C release or sequestration, depending on land use, land management and climate. The United Nations Convention on Climate Change and its Kyoto Protocol, and other United Nations Conventions to Combat Desertification and on Biodiversity all recognize the importance of SOC and point to the need for quantification of SOC stocks and changes. An understanding of SOC stocks and changes at the national and regional scale is necessary to further our understanding of the global C cycle, to assess the responses of terrestrial ecosystems to climate change and to aid policy makers in making land use/management decisions. Several studies have considered SOC stocks at the plot scale, but these are site specific and of limited value in making inferences about larger areas. Some studies have used empirical methods to estimate SOC stocks and changes at the regional scale, but such studies are limited in their ability to project future changes, and most have been carried out using temperate data sets. The computational method outlined by the Intergovernmental Panel on Climate Change (IPCC) has been used to estimate SOC stock changes at the regional scale in several studies, including a recent study considering five contrasting eco regions. This 'one step' approach fails to account for the dynamic manner in which SOC changes are likely to occur following changes in land use and land management. A dynamic modelling approach allows estimates to be made in a manner that accounts for the underlying processes leading to SOC change. Ecosystem models, designed for site scale applications can be linked to spatial databases, giving spatially explicit results that allow geographic areas of change in SOC stocks to be identified. Some studies have used variations on this approach to estimate SOC stock changes at the sub-national and national scale for areas of the USA and Europe and at the watershed scale for areas of Mexico and Cuba. However, a need remained for a national and regional scale, spatially explicit system that is generically applicable and can be applied to as wide a range of soil types, climates and land uses as possible. The Global Environment Facility Soil Organic Carbon (GEFSOC) Modelling System was developed in response to this need. The GEFSOC system allows estimates of SOC stocks and changes to be made for diverse conditions, providing essential information for countries wishing to take part in an emerging C market, and bringing us closer to an understanding of the future role of soils in the global C cycle. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We present a general Multi-Agent System framework for distributed data mining based on a Peer-to-Peer model. Agent protocols are implemented through message-based asynchronous communication. The framework adopts a dynamic load balancing policy that is particularly suitable for irregular search algorithms. A modular design allows a separation of the general-purpose system protocols and software components from the specific data mining algorithm. The experimental evaluation has been carried out on a parallel frequent subgraph mining algorithm, which has shown good scalability performances.
Resumo:
A new model of dispersion has been developed to simulate the impact of pollutant discharges on river systems. The model accounts for the main dispersion processes operating in rivers as well as the dilution from incoming tributaries and first-order kinetic decay processes. The model is dynamic and simulates the hourly behaviour of river flow and pollutants along river systems. The model has been applied to the Aries and Mures River System in Romania and has been used to assess the impacts of potential dam releases from the Roia Montan Mine in Transylvania, Romania. The question of mine water release is investigated under a range of scenarios. The impacts on pollution levels downstream at key sites and at the border with Hungary are investigated.
Resumo:
There is a need for better links between hydrology and ecology, specifically between landscapes and riverscapes to understand how processes and factors controlling the transport and storage of environmental pollution have affected or will affect the freshwater biota. Here we show how the INCA modelling framework, specifically INCA-Sed (the Integrated Catchments model for Sediments) can be used to link sediment delivery from the landscape to sediment changes in-stream. INCA-Sed is a dynamic, process-based, daily time step model. The first complete description of the equations used in the INCA-Sed software (version 1.9.11) is presented. This is followed by an application of INCA-Sed made to the River Lugg (1077 km2) in Wales. Excess suspended sediment can negatively affect salmonid health. The Lugg has a large and potentially threatened population of both Atlantic salmon (Salmo salar) and Brown Trout (Salmo trutta). With the exception of the extreme sediment transport processes, the model satisfactorily simulated both the hydrology and the sediment dynamics in the catchment. Model results indicate that diffuse soil loss is the most important sediment generation process in the catchment. In the River Lugg, the mean annual Guideline Standard for suspended sediment concentration, proposed by UKTAG, of 25 mg l− 1 is only slightly exceeded during the simulation period (1995–2000), indicating only minimal effect on the Atlantic salmon population. However, the daily time step simulation of INCA-Sed also allows the investigation of the critical spawning period. It shows that the sediment may have a significant negative effect on the fish population in years with high sediment runoff. It is proposed that the fine settled particles probably do not affect the salmonid egg incubation process, though suspended particles may damage the gills of fish and make the area unfavourable for spawning if the conditions do not improve.
Resumo:
This paper provides a generalisation of the structural time series version of the Almost Ideal Demand System (AIDS) that allows for time-varying coefficients (TVC/AIDS) in the presence of cross-equation constraints. An empirical appraisal of the TVC/AIDS is made using a dynamic AIDS with trending intercept as the baseline model with a data set from the Italian Household Budget Survey (1986-2001). The assessment is based on four criteria: adherence to theoretical constraints, statistical diagnostics on residuals, forecasting performance and economic meaningfulness. No clear evidence is found for superior performance of the TVC/AIDS, apart from improved short-term forecasts.
Resumo:
This paper discusses experimental and theoretical investigations and Computational Fluid Dynamics (CFD) modelling considerations to evaluate the performance of a square section wind catcher system connected to the top of a test room for the purpose of natural ventilation. The magnitude and distribution of pressure coefficients (C-p) around a wind catcher and the air flow into the test room were analysed. The modelling results indicated that air was supplied into the test room through the wind catcher's quadrants with positive external pressure coefficients and extracted out of the test room through quadrants with negative pressure coefficients. The air flow achieved through the wind catcher depends on the speed and direction of the wind. The results obtained using the explicit and AIDA implicit calculation procedures and CFX code correlate relatively well with the experimental results at lower wind speeds and with wind incidents at an angle of 0 degrees. Variation in the C-p and air flow results were observed particularly with a wind direction of 45 degrees. The explicit and implicit calculation procedures were found to be quick and easy to use in obtaining results whereas the wind tunnel tests were more expensive in terms of effort, cost and time. CFD codes are developing rapidly and are widely available especially with the decreasing prices of computer hardware. However, results obtained using CFD codes must be considered with care, particularly in the absence of empirical data.
Resumo:
Inverse problems for dynamical system models of cognitive processes comprise the determination of synaptic weight matrices or kernel functions for neural networks or neural/dynamic field models, respectively. We introduce dynamic cognitive modeling as a three tier top-down approach where cognitive processes are first described as algorithms that operate on complex symbolic data structures. Second, symbolic expressions and operations are represented by states and transformations in abstract vector spaces. Third, prescribed trajectories through representation space are implemented in neurodynamical systems. We discuss the Amari equation for a neural/dynamic field theory as a special case and show that the kernel construction problem is particularly ill-posed. We suggest a Tikhonov-Hebbian learning method as regularization technique and demonstrate its validity and robustness for basic examples of cognitive computations.
Resumo:
This paper presents a hybrid control strategy integrating dynamic neural networks and feedback linearization into a predictive control scheme. Feedback linearization is an important nonlinear control technique which transforms a nonlinear system into a linear system using nonlinear transformations and a model of the plant. In this work, empirical models based on dynamic neural networks have been employed. Dynamic neural networks are mathematical structures described by differential equations, which can be trained to approximate general nonlinear systems. A case study based on a mixing process is presented.
Apodisation, denoising and system identification techniques for THz transients in the wavelet domain
Resumo:
This work describes the use of a quadratic programming optimization procedure for designing asymmetric apodization windows to de-noise THz transient interferograms and compares these results to those obtained when wavelet signal processing algorithms are adopted. A systems identification technique in the wavelet domain is also proposed for the estimation of the complex insertion loss function. The proposed techniques can enhance the frequency dependent dynamic range of an experiment and should be of particular interest to the THz imaging and tomography community. Future advances in THz sources and detectors are likely to increase the signal-to-noise ratio of the recorded THz transients and high quality apodization techniques will become more important, and may set the limit on the achievable accuracy of the deduced spectrum.
Resumo:
We discuss the feasibility of wireless terahertz communications links deployed in a metropolitan area and model the large-scale fading of such channels. The model takes into account reception through direct line of sight, ground and wall reflection, as well as diffraction around a corner. The movement of the receiver is modeled by an autonomous dynamic linear system in state space, whereas the geometric relations involved in the attenuation and multipath propagation of the electric field are described by a static nonlinear mapping. A subspace algorithm in conjunction with polynomial regression is used to identify a single-output Wiener model from time-domain measurements of the field intensity when the receiver motion is simulated using a constant angular speed and an exponentially decaying radius. The identification procedure is validated by using the model to perform q-step ahead predictions. The sensitivity of the algorithm to small-scale fading, detector noise, and atmospheric changes are discussed. The performance of the algorithm is tested in the diffraction zone assuming a range of emitter frequencies (2, 38, 60, 100, 140, and 400 GHz). Extensions of the simulation results to situations where a more complicated trajectory describes the motion of the receiver are also implemented, providing information on the performance of the algorithm under a worst case scenario. Finally, a sensitivity analysis to model parameters for the identified Wiener system is proposed.
Resumo:
In this study a minimum variance neuro self-tuning proportional-integral-derivative (PID) controller is designed for complex multiple input-multiple output (MIMO) dynamic systems. An approximation model is constructed, which consists of two functional blocks. The first block uses a linear submodel to approximate dominant system dynamics around a selected number of operating points. The second block is used as an error agent, implemented by a neural network, to accommodate the inaccuracy possibly introduced by the linear submodel approximation, various complexities/uncertainties, and complicated coupling effects frequently exhibited in non-linear MIMO dynamic systems. With the proposed model structure, controller design of an MIMO plant with n inputs and n outputs could be, for example, decomposed into n independent single input-single output (SISO) subsystem designs. The effectiveness of the controller design procedure is initially verified through simulations of industrial examples.
Resumo:
Previous studies have demonstrated that when we observe somebody else executing an action many areas of our own motor systems are active. It has been argued that these motor activations are evidence that we motorically simulate observed actions; this motoric simulation may support various functions such as imitation and action understanding. However, whether motoric simulation is indeed the function of motor activations during action observation is controversial, due to inconsistency in findings. Previous studies have demonstrated dynamic modulations in motor activity when we execute actions. Therefore, if we do motorically simulate observed actions, our motor systems should also be modulated dynamically, and in a corresponding fashion, during action observation. Using magnetoencephalography (MEG), we recorded the cortical activity of human participants while they observed actions performed by another person. Here, we show that activity in the human motor system is indeed modulated dynamically during action observation. The finding that activity in the motor system is modulated dynamically when observing actions can explain why studies of action observation using functional magnetic resonance imaging (fMRI) have reported conflicting results, and is consistent with the hypothesis that we motorically simulate observed actions.
Resumo:
Purpose – Construction sector competitiveness has been a subject of interest for many years. Research too often focuses on the means of overcoming the “barriers to change” as if such barriers were static entities. There has been little attempt to understand the dynamic inter-relationship between the differing factors which impinge upon construction sector competitiveness. The purpose of this paper is to outline the benefits of taking a systems approach to construction competitiveness research. Design/methodology/approach – The system dynamics (SD) modelling methodology is described. This can provide practitioners with “microworlds” within which they can explore the dynamic effects of different policy decisions. The data underpinning the use of SD was provided by interviews and case study research which allowed an understanding of the context within which practitioners operate. Findings – The over-riding conclusion is that the SD methodology has been shown to be capable of providing a means to assess the forces which shape the sustained competitiveness of construction firms. As such, it takes the assessment of strategic policy analysis in the construction sector onto a higher plane. The need to collect data and make retrospective assessments of competitiveness and strategic performance at the statistical level is not now the only modus operandi available. Originality/value – The paper describes a novel research methodology which points towards an alternative research agenda for construction competitiveness research.
Resumo:
The recursive least-squares algorithm with a forgetting factor has been extensively applied and studied for the on-line parameter estimation of linear dynamic systems. This paper explores the use of genetic algorithms to improve the performance of the recursive least-squares algorithm in the parameter estimation of time-varying systems. Simulation results show that the hybrid recursive algorithm (GARLS), combining recursive least-squares with genetic algorithms, can achieve better results than the standard recursive least-squares algorithm using only a forgetting factor.