955 resultados para two-dimensional field theory
Resumo:
In arbitrary dimensional spaces the Lie algebra of the Poincaré group is seen to be a subalgebra of the complex Galilei algebra, while the Galilei algebra is a subalgebra of Poincar algebra. The usual contraction of the Poincar to the Galilei group is seen to be equivalent to a certain coordinate transformation.
Resumo:
A cardiac-triggered free-breathing three-dimensional balanced fast field-echo projection magnetic resonance (MR) angiographic sequence with a two-dimensional pencil-beam aortic labeling pulse was developed for the renal arteries. For data acquisition during free breathing in eight healthy adults and seven consecutive patients with renal artery disease, real-time navigator technology was implemented. This technique allows high-spatial-resolution and high-contrast renal MR angiography and visualization of renal artery stenosis without exogenous contrast agent or breath hold. Initial promising results warrant larger clinical studies.
Resumo:
The integral representation of the electromagnetic two-form, defined on Minkowski space-time, is studied from a new point of view. The aim of the paper is to obtain an invariant criteria in order to define the radiative field. This criteria generalizes the well-known structureless charge case. We begin with the curvature two-form, because its field equations incorporate the motion of the sources. The gauge theory methods (connection one-forms) are not suited because their field equations do not incorporate the motion of the sources. We obtain an integral solution of the Maxwell equations in the case of a flow of charges in irrotational motion. This solution induces us to propose a new method of solving the problem of the nature of the retarded radiative field. This method is based on a projection tensor operator which, being local, is suited to being implemented on general relativity. We propose the field equations for the pair {electromagnetic field, projection tensor J. These field equations are an algebraic differential first-order system of oneforms, which verifies automatically the integrability conditions.
Resumo:
A covariant formalism is developed for describing perturbations on vacuum domain walls and strings. The treatment applies to arbitrary domain walls in (N+1)-dimensional flat spacetime, including the case of bubbles of a true vacuum nucleating in a false vacuum. Straight strings and planar walls in de Sitter space, as well as closed strings and walls nucleating during inflation, are also considered. Perturbations are represented by a scalar field defined on the unperturbed wall or string world sheet. In a number of interesting cases, this field has a tachyonic mass and a nonminimal coupling to the world-sheet curvature.
Resumo:
The scalar sector of the effective low-energy six-dimensional Kaluza-Klein theory is seen to represent an anisotropic fluid composed of two perfect fluids if the extra space metric has a Euclidean signature, or a perfect fluid of geometric strings if it has an indefinite signature. The Einstein field equations with such fluids can be explicitly integrated when the four-dimensional space-time has two commuting Killing vectors.
Resumo:
Particle production in a cosmological spacetime with extra dimensions is discussed. A five-dimensional cosmological model with a three-dimensional space expanding isotropically like in a radiative Friedmann-Robertson-Walker model and an internal space contracting to a constant small size is considered. The parameters of the model are adjusted so that time variations in internal space are compatible with present limits on time variations of the fundamental constants. By requiring that the energy density of the particles produced be less than the critical density at the radiation era we set restrictions on two more parameters: namely, the initial time of application of the semiclassical approach and the relative sizes between the internal space and the horizon of the ordinary Universe at this time. Whereas the production of massless particles allows a large range of variation to these parameters, the production of massive particles sets severe constraints on them, since, if they are overproduced, their energy density might very soon dominate the Universe and make cosmological dimensional reduction by extradimensional contraction unlikely.
Resumo:
A two-dimensional reaction-diffusion front which propagates in a modulated medium is studied. The modulation consists of a spatial variation of the local front velocity in the transverse direction to that of the front propagation. We study analytically and numerically the final steady-state velocity and shape of the front, resulting from a nontrivial interplay between the local curvature effects and the global competition process between different maxima of the control parameter. The transient dynamics of the process is also studied numerically and analytically by means of singular perturbation techniques.
Resumo:
We prove a characterization of the support of the law of the solution for a stochastic wave equation with two-dimensional space variable, driven by a noise white in time and correlated in space. The result is a consequence of an approximation theorem, in the convergence of probability, for equations obtained by smoothing the random noise. For some particular classes of coefficients, approximation in the Lp-norm for p¿1 is also proved.
Resumo:
Recently a fingering morphology, resembling the hydrodynamic Saffman-Taylor instability, was identified in the quasi-two-dimensional electrodeposition of copper. We present here measurements of the dispersion relation of the growing front. The instability is accompanied by gravity-driven convection rolls at the electrodes, which are examined using particle image velocimetry. While at the anode the theory presented by Chazalviel et al. [J. Electroanal. Chem. 407, 61 (1996)] describes the convection roll, the flow field at the cathode is more complicated because of the growing deposit. In particular, the analysis of the orientation of the velocity vectors reveals some lag of the development of the convection roll compared to the finger envelope.
Resumo:
The recent production of synthetic magnetic fields acting on electroneutral particles, such as atoms or photons, has boosted interest in the quantum Hall physics of bosons. Adding pseudospin 1/2 to the bosons greatly enriches the scenario, as it allows them to form an interacting integer quantum Hall (IQH) phase with no fermionic counterpart. Here we show that, for a small two-component Bose gas on a disk, the complete strongly correlated regime, extending from the integer phase at filling factor ν = 2 to the Halperin phase at filling factor ν = 2 / 3, is well described by composite fermionization of the bosons. Moreover we study the edge excitations of the IQH state, which, in agreement with expectations from topological field theory, are found to consist of forward-moving charge excitations and backward-moving spin excitations. Finally, we demonstrate how pair-correlation functions allow one to experimentally distinguish the IQH state from competing states, such as non-Abelian spin singlet (NASS) states.
Resumo:
We report on the study of nonequilibrium ordering in the reaction-diffusion lattice gas. It is a kinetic model that relaxes towards steady states under the simultaneous competition of a thermally activated creation-annihilation $(reaction$) process at temperature T, and a diffusion process driven by a heat bath at temperature T?T. The phase diagram as one varies T and T, the system dimension d, the relative priori probabilities for the two processes, and their dynamical rates is investigated. We compare mean-field theory, new Monte Carlo data, and known exact results for some limiting cases. In particular, no evidence of Landau critical behavior is found numerically when d=2 for Metropolis rates but Onsager critical points and a variety of first-order phase transitions.
Resumo:
We consider a renormalizable two-dimensional model of dilaton gravity coupled to a set of conformal fields as a toy model for quantum cosmology. We discuss the cosmological solutions of the model and study the effect of including the back reaction due to quantum corrections. As a result, when the matter density is below some threshold new singularities form in a weak-coupling region, which suggests that they will not be removed in the full quantum theory. We also solve the Wheeler-DeWitt equation. Depending on the quantum state of the Universe, the singularities may appear in a quantum region where the wave function is not oscillatory, i.e., when there is not a well-defined notion of classical spacetime.
Resumo:
We clarify some issues related to the evaluation of the mean value of the energy-momentum tensor for quantum scalar fields coupled to the dilaton field in two-dimensional gravity. Because of this coupling, the energy-momentum tensor for matter is not conserved and therefore it is not determined by the trace anomaly. We discuss different approximations for the calculation of the energy-momentum tensor and show how to obtain the correct amount of Hawking radiation. We also compute cosmological particle creation and quantum corrections to the Newtonian potential.
Resumo:
The recently developed semiclassical variational Wigner-Kirkwood (VWK) approach is applied to finite nuclei using external potentials and self-consistent mean fields derived from Skyrme inter-actions and from relativistic mean field theory. VWK consist s of the Thomas-Fermi part plus a pure, perturbative h 2 correction. In external potentials, VWK passes through the average of the quantal values of the accumulated level density and total en energy as a function of the Fermi energy. However, there is a problem of overbinding when the energy per particle is displayed as a function of the particle number. The situation is analyzed comparing spherical and deformed harmonic oscillator potentials. In the self-consistent case, we show for Skyrme forces that VWK binding energies are very close to those obtained from extended Thomas-Fermi functionals of h 4 order, pointing to the rapid convergence of the VWK theory. This satisfying result, however, does not cure the overbinding problem, i.e., the semiclassical energies show more binding than they should. This feature is more pronounced in the case of Skyrme forces than with the relativistic mean field approach. However, even in the latter case the shell correction energy for e.g.208 Pb turns out to be only ∼ −6 MeV what is about a factor two or three off the generally accepted value. As an adhoc remedy, increasing the kinetic energy by 2.5%, leads to shell correction energies well acceptable throughout the periodic table. The general importance of the present studies for other finite Fermi systems, self-bound or in external potentials, is pointed out.
Resumo:
The recent production of synthetic magnetic fields acting on electroneutral particles, such as atoms or photons, has boosted interest in the quantum Hall physics of bosons. Adding pseudospin 1/2 to the bosons greatly enriches the scenario, as it allows them to form an interacting integer quantum Hall (IQH) phase with no fermionic counterpart. Here we show that, for a small two-component Bose gas on a disk, the complete strongly correlated regime, extending from the integer phase at filling factor ν = 2 to the Halperin phase at filling factor ν = 2 / 3, is well described by composite fermionization of the bosons. Moreover we study the edge excitations of the IQH state, which, in agreement with expectations from topological field theory, are found to consist of forward-moving charge excitations and backward-moving spin excitations. Finally, we demonstrate how pair-correlation functions allow one to experimentally distinguish the IQH state from competing states, such as non-Abelian spin singlet (NASS) states.