967 resultados para tumor necrosis factor alpha induced protein 6
Resumo:
In the last two decades, anti-cancer vaccines have yielded disappointing clinical results despite the fact that high numbers of self/tumor-specific T cells can be elicited in immunized patients. Understanding the reasons behind this lack of efficacy is critical in order to design better treatment regimes. Recombinant lentivectors (rLVs) have been successfully used to induce antigen-specific T cells to foreign or mutated tumor antigens. Here, we show that rLV expressing a murine nonmutated self/tumor antigen efficiently primes large numbers of self/tumor-specific CD8(+) T cells. In spite of the large number of tumor-specific T cells, however, no anti-tumor activity could be measured in a therapeutic setting, in mice vaccinated with rLV. Accumulating evidence shows that, in the presence of malignancies, inhibition of T-cell activity may predominate overstimulation. Analysis of tumor-infiltrating lymphocytes revealed that specific anti-tumor CD8(+) T cells fail to produce cytokines and express high levels of inhibitory receptors such as programmed death (PD)-1. Association of active immunization with chemotherapy or antibodies that block inhibitory pathways often leads to better anti-tumor effects. We show here that combining rLV vaccination with either cyclophosphamide or PD-1 and PD-L1 blocking antibodies enhances rLV vaccination efficacy and improves anti-tumor immunity.
Resumo:
The three peroxisome proliferator-activated receptors (PPAR alpha, PPAR beta, and PPAR gamma) are ligand-activated transcription factors belonging to the nuclear hormone receptor superfamily. They are regarded as being sensors of physiological levels of fatty acids and fatty acid derivatives. In the adult mouse skin, they are found in hair follicle keratinocytes but not in interfollicular epidermis keratinocytes. Skin injury stimulates the expression of PPAR alpha and PPAR beta at the site of the wound. Here, we review the spatiotemporal program that triggers PPAR beta expression immediately after an injury, and then gradually represses it during epithelial repair. The opposing effects of the tumor necrosis factor-alpha and transforming growth factor-beta-1 signalling pathways on the activity of the PPAR beta promoter are the key elements of this regulation. We then compare the involvement of PPAR beta in the skin in response to an injury and during hair morphogenesis, and underscore the similarity of its action on cell survival in both situations.
Resumo:
Intrathecal injections of 50 to 100 micro g of (N-acetylmuramyl-L-alanyl-D-isoglutamine) muramyl dipeptide (MDP)/rabbit dose-dependently triggered tumor necrosis factor alpha (TNF-alpha) secretion (12 to 40,000 pg/ml) preceding the influx of leukocytes in the subarachnoid space of rabbits. Intrathecal instillation of heat-killed unencapsulated R6 pneumococci produced a comparable leukocyte influx but only a minimal level of preceding TNF-alpha secretion. The stereochemistry of the first amino acid (L-alanine) of the MDP played a crucial role with regard to its inflammatory potential. Isomers harboring D-alanine in first position did not induce TNF-alpha secretion and influx of leukocytes. This stereospecificity of MDPs was also confirmed by measuring TNF-alpha release from human peripheral mononuclear blood cells stimulated in vitro. These data show that the inflammatory potential of MDPs depends on the stereochemistry of the first amino acid of the peptide side chain and suggest that intact pneumococci and MDPs induce inflammation by different pathways.
Resumo:
Mast cells are important in the initiation of ocular inflammation, but the consequences of mast cell degranulation on ocular pathology remain uncharacterized. We induced mast cell degranulation by local subconjunctival injection of compound 48/80. Initial degranulation of mast cells was observed in the choroid 15 minutes after the injection and increased up to 3 hours after injection. Clinical signs of anterior segment inflammation paralleled mast cell degranulation. With the use of optical coherence tomography, dilation of choroidal vessels and serous retinal detachments (SRDs) were observed and confirmed by histology. Subconjunctival injection of disodium cromoglycate significantly reduced the rate of SRDs, demonstrating the involvement of mast cell degranulation in posterior segment disorders. The infiltration of polymorphonuclear and macrophage cells was associated with increased ocular media concentrations of tumor necrosis factor-α, CXCL1, IL-6, IL-5, chemokine ligand 2, and IL-1^6;. Analysis of the amounts of vascular endothelial growth factor and IL-18 showed an opposite evolution of vascular endothelial growth factor compared with IL-18 concentrations, suggesting that they regulate each other's production. These findings suggest that the local degranulation of ocular mast cells provoked acute ocular inflammation, dilation, increased vascular permeability of choroidal vessels, and SRDs. The involvement of mast cells in retinal diseases should be further investigated. The pharmacologic inhibition of mast cell degranulation may be a potential target for intervention.
Resumo:
BACKGROUND: Increasing evidences link T helper 17 (Th17) cells with multiple sclerosis (MS). In this context, interleukin-22 (IL-22), a Th17-linked cytokine, has been implicated in blood brain barrier breakdown and lymphocyte infiltration. Furthermore, polymorphism between MS patients and controls has been recently described in the gene coding for IL-22 binding protein (IL-22BP). Here, we aimed to better characterize IL-22 in the context of MS. METHODS: IL-22 and IL-22BP expressions were assessed by ELISA and qPCR in the following compartments of MS patients and control subjects: (1) the serum, (2) the cerebrospinal fluid, and (3) immune cells of peripheral blood. Identification of the IL-22 receptor subunit, IL-22R1, was performed by immunohistochemistry and immunofluorescence in human brain tissues and human primary astrocytes. The role of IL-22 on human primary astrocytes was evaluated using 7-AAD and annexin V, markers of cell viability and apoptosis, respectively. RESULTS: In a cohort of 141 MS patients and healthy control (HC) subjects, we found that serum levels of IL-22 were significantly higher in relapsing MS patients than in HC but also remitting and progressive MS patients. Monocytes and monocyte-derived dendritic cells contained an enhanced expression of mRNA coding for IL-22BP as compared to HC. Using immunohistochemistry and confocal microscopy, we found that IL-22 and its receptor were detected on astrocytes of brain tissues from both control subjects and MS patients, although in the latter, the expression was higher around blood vessels and in MS plaques. Cytometry-based functional assays revealed that addition of IL-22 improved the survival of human primary astrocytes. Furthermore, tumor necrosis factor α-treated astrocytes had a better long-term survival capacity upon IL-22 co-treatment. This protective effect of IL-22 seemed to be conferred, at least partially, by a decreased apoptosis. CONCLUSIONS: We show that (1) there is a dysregulation in the expression of IL-22 and its antagonist, IL-22BP, in MS patients, (2) IL-22 targets specifically astrocytes in the human brain, and (3) this cytokine confers an increased survival of the latter cells.
Resumo:
Bone marrow fibrosis occurs in association with a number of pathological states. Despite the extensive fibrosis that sometimes characterizes renal osteodystrophy, little is known about the factors that contribute to marrow accumulation of fibrous tissue. Because circulating cytokines are elevated in uremia, possibly in response to elevated parathyroid hormone levels, we have examined bone biopsies from 21 patients with end-stage renal disease and secondary hyperparathyroidism. Bone sections were stained with antibodies to human interleukin-1alpha (IL-1alpha), IL-6, IL-11, tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-ß (TGF-ß) using an undecalcified plastic embedding method. Intense staining for IL-1alpha, IL-6, TNF-alpha and TGF-ß was evident within the fibrotic tissue of the bone marrow while minimal IL-11 was detected. The extent of cytokine deposition corresponded to the severity of fibrosis, suggesting their possible involvement in the local regulation of the fibrotic response. Because immunoreactive TGF-ß and IL-6 were also detected in osteoblasts and osteocytes, we conclude that selective cytokine accumulation may have a role in modulating bone and marrow cell function in parathyroid-mediated uremic bone disease.
Resumo:
The aims of this study were to investigate the serum levels of some cytokines [tumor necrosis factor-alpha (TNF-alpha), interleukin 1ß (IL-1ß), IL-2R, IL-6, and IL-8] and nitric oxide (NO) levels in patients with untreated brucellosis and to test the correlation of these parameters with each other. The study was conducted on 67 subjects, 37 patients with brucellosis and 30 healthy individuals with no history of Brucella infection. Brucellosis was identified by a positive blood culture and/or increased Brucella antibodies in serological tests in addition to compatible clinical symptoms. Cytokine profile analysis was performed by the immulite chemiluminescent enzyme immunometric assay whose inter- and intra-assay coefficients of variance were 2.6-3.6 and 4.4-8.5%, respectively. The levels of nitrites/nitrates, which are representative of NO levels, were measured by the Griess method. Patients with brucellosis had significantly elevated serum levels of nitrites/nitrates, IL-2R, IL-6 and IL-8 (mean ± SD, 102.8 ± 23.8 µmol/l, 806.1 ± 58.5 U/ml, 21.1 ± 2.3 pg/ml, and 8.8 ± 1.6 pg/ml, respectively) compared to healthy controls, whereas TNF-alpha and IL-1ß levels were unchanged. No statistically significant correlation was detected between any of the studied cytokine levels and nitrate/nitrite concentrations according to Pearson's linear correlation test. We conclude that only IL-6, IL-8 and IL-2R are elevated in brucellosis and the extent of elevation depends on the severity and clinical pattern of the disease. Moderate elevation in serum NO was comparable to that observed in previous studies. This explains the absence or very rare occurrence of septic shock in brucellosis.
Resumo:
Rheumatoid arthritis is characterized by the presence of inflammatory synovitis and destruction of joint cartilage and bone. Tissue proteinases released by synovia, chondrocytes and pannus can cause cartilage destruction and cytokine-activated osteoclasts have been implicated in bone erosions. Rheumatoid arthritis synovial tissues produce a variety of cytokines and growth factors that induce monocyte differentiation to osteoclasts and their proliferation, activation and longer survival in tissues. More recently, a major role in bone erosion has been attributed to the receptor activator of nuclear factor kappa B ligand (RANKL) released by activated lymphocytes and osteoblasts. In fact, osteoclasts are markedly activated after RANKL binding to the cognate RANK expressed on the surface of these cells. RANKL expression can be upregulated by bone-resorbing factors such as glucocorticoids, vitamin D3, interleukin 1 (IL-1), IL-6, IL-11, IL-17, tumor necrosis factor-alpha, prostaglandin E2, or parathyroid hormone-related peptide. Supporting this idea, inhibition of RANKL by osteoprotegerin, a natural soluble RANKL receptor, prevents bone loss in experimental models. Tumor growth factor-ß released from bone during active bone resorption has been suggested as one feedback mechanism for upregulating osteoprotegerin and estrogen can increase its production on osteoblasts. Modulation of these systems provides the opportunity to inhibit bone loss and deformity in chronic arthritis.
Resumo:
High mobility group box 1 (HMGB1) was discovered as a novel late-acting cytokine that contributes to acute lung injury (ALI). However, the contribution of HMGB1 to two-hit-induced ALI has not been investigated. To examine the participation of HMGB1 in the pathogenesis of ALI caused by the two-hit hypothesis, endotoxin was injected intratracheally in a hemorrhagic shock-primed ALI mouse model. Concentrations of HMGB1 in the lung of the shock group were markedly increased at 16 h (1.63 ± 0.05, compared to the control group: 1.02 ± 0.03; P < 0.05), with the highest concentration being observed at 24 h. In the sham/lipopolysaccharide group, lung HMGB1 concentrations were found to be markedly increased at 24 h (1.98 ± 0.08, compared to the control group: 1.07 ± 0.03; P < 0.05). Administration of lipopolysaccharide to the hemorrhagic shock group resulted in a notable HMGB1 increase by 4 h, with a further increase by 16 h. Intratracheal lipopolysaccharide injection after hemorrhagic shock resulted in the highest lung leak at 16 h (2.68 ± 0.08, compared to the control group: 1.05 ± 0.04; P < 0.05). Compared to the hemorrhagic shock/lipopolysaccharide mice, blockade of HMGB1 at the same time as lipopolysaccharide injection prevented significantly pulmonary tumor necrosis factor-alpha, interleukin-1beta and myeloperoxidase. Lung leak was also markedly reduced at 16 h; blockade of HMGB1 24 h after lipopolysaccharide injection failed to alter lung leak or myeloperoxidase at 48 h. Our observations suggest that HMGB1 plays a key role as a late mediator when lipopolysaccharide is injected after hemorrhagic shock-primed ALI and the kinetics of its release differs from that of one-hit ALI. The therapeutic window to suppress HMGB1 activity should not be delayed to 24 h after the disease onset.
Resumo:
Shock and resuscitation render patients more susceptible to acute lung injury due to an exacerbated immune response to subsequent inflammatory stimuli. To study the role of innate immunity in this situation, we investigated acute lung injury in an experimental model of ischemia-reperfusion (I-R) followed by an early challenge with live bacteria. Conscious rats (N = 8 in each group) were submitted to controlled hemorrhage and resuscitated with isotonic saline (SS, 0.9% NaCl) or hypertonic saline (HS, 7.5% NaCl) solution, followed by intratracheal or intraperitoneal inoculation of Escherichia coli. After infection, toll-like receptor (TLR) 2 and 4 mRNA expression was monitored by RT-PCR in infected tissues. Plasma levels of tumor necrosis factor α and interleukins 6 and 10 were determined by ELISA. All animals showed similar hemodynamic variables, with mean arterial pressure decreasing to nearly 40 mmHg after bleeding. HS or SS used as resuscitation fluid yielded equal hemodynamic results. Intratracheal E. coli inoculation per se induced a marked neutrophil infiltration in septa and inside the alveoli, while intraperitoneal inoculation-associated neutrophils and edema were restricted to the interseptal space. Previous I-R enhanced lung neutrophil infiltration upon bacterial challenge when SS was used as reperfusion fluid, whereas neutrophil influx was unchanged in HS-treated animals. No difference in TLR expression or cytokine secretion was detected between groups receiving HS or SS. We conclude that HS is effective in reducing the early inflammatory response to infection after I-R, and that this phenomenon is achieved by modulation of factors other than expression of innate immunity components.
Resumo:
Febrile neutropenia remains a frequent complication in onco-hematological patients, and changes in the circulating level of inflammatory molecules (IM) may precede the occurrence of fever. The present observational prospective study was carried out to evaluate the behavior of plasma tumor necrosis factor alpha (TNF-α), soluble TNF-α I and II receptors (sTNFRI and sTNFRII), monocyte chemoattractant protein-1 [MCP-1 or chemokine (c-c motif) ligand 2 (CCL2)], macrophage inflammatory protein-1α (MIP-1α or CCL3), eotaxin (CCL11), interleukin-8 (IL-8 or CXCL8), and interferon-inducible protein-10 (IP-10 or CXCL10) in 32 episodes of neutropenia in 26 onco-hematological patients. IM were tested on enrollment and 24-48 h before the onset of fever and within 24 h of the first occurrence of fever. Eight of 32 episodes of neutropenia did not present fever (control group) and the patients underwent IM tests on three different occasions. sTNFRI levels, measured a median of 11 h (1-15) before the onset of fever, were significantly higher in patients presenting fever during follow-up compared to controls (P = 0.02). Similar results were observed for sTNFRI and CCL2 levels (P = 0.04 for both) in non-transplanted patients. A cut-off of 1514 pg/mL for sTNFRI was able to discriminate between neutropenic patients with or without fever during follow-up, with 65% sensitivity, 87% specificity, and 93% positive predictive value. Measurement of the levels of plasma sTNFRI can be used to predict the occurrence of fever in neutropenic patients.
Resumo:
Numerous studies address the physiology of adipose tissue (AT). The interest surrounding the physiology of AT is primarily the result of the epidemic outburst of obesity in various contemporary societies. Briefly, the two primary metabolic activities of white AT include lipogenesis and lipolysis. Throughout the last two decades, a new model of AT physiology has emerged. Although AT was considered to be primarily an abundant energy source, it is currently considered to be a prolific producer of biologically active substances, and, consequently, is now recognized as an endocrine organ. In addition to leptin, other biologically active substances secreted by AT, generally classified as cytokines, include adiponectin, interleukin-6, tumor necrosis factor-alpha, resistin, vaspin, visfatin, and many others now collectively referred to as adipokines. The secretion of such biologically active substances by AT indicates its importance as a metabolic regulator. Cell turnover of AT has also recently been investigated in terms of its biological role in adipogenesis. Consequently, the objective of this review is to provide a comprehensive critical review of the current literature concerning the metabolic (lipolysis, lipogenesis) and endocrine actions of AT.
Resumo:
Pain is a common symptom in patients with cancer, including those with head and neck cancer (HNC). While studies suggest an association between chronic inflammation and pain, levels of inflammatory cytokines, such as C-reactive protein (CRP) and tumor necrosis factor-alpha (TNF-α), have not been correlated with pain in HNC patients who are not currently undergoing anticancer treatment. The purpose of this study was to examine the relationship between these inflammatory markers and perceived pain in HNC patients prior to anticancer therapy. The study group consisted of 127 HNC patients and 9 healthy controls. Pain was assessed using the Brief Pain Inventory (BPI), and serum levels of CRP and TNF-α were determined using the particle-enhanced turbidimetric immunoassay (PETIA) and ELISA techniques, respectively. Patients experiencing pain had significantly higher levels of CRP (P<0.01) and TNF-α (P<0.05) compared with controls and with patients reporting no pain. There were significantly positive associations between pain, CRP level, and tumor stage. This is the first study to report a positive association between perceived pain and CRP in HNC patients at the time of diagnosis. The current findings suggest important associations between pain and inflammatory processes in HNC patients, with potential implications for future treatment strategies.
Resumo:
Cardiac contusion is a potentially fatal complication of blunt chest trauma. The effects of a combination of quercetin and methylprednisolone against trauma-induced cardiac contusion were studied. Thirty-five female Sprague-Dawley rats were divided into five groups (n=7) as follows: sham, cardiac contusion with no therapy, treated with methylprednisolone (30 mg/kg on the first day, and 3 mg/kg on the following days), treated with quercetin (50 mg·kg−1·day−1), and treated with a combination of methylprednisolone and quercetin. Serum troponin I (Tn-I) and tumor necrosis factor-alpha (TNF-α) levels and cardiac histopathological findings were evaluated. Tn-I and TNF-α levels were elevated after contusion (P=0.001 and P=0.001). Seven days later, Tn-I and TNF-α levels decreased in the rats treated with methylprednisolone, quercetin, and the combination of methylprednisolone and quercetin compared to the rats without therapy, but a statistical significance was found only with the combination therapy (P=0.001 and P=0.011, respectively). Histopathological degeneration and necrosis scores were statistically lower in the methylprednisolone and quercetin combination group compared to the group treated only with methylprednisolone (P=0.017 and P=0.007, respectively). However, only degeneration scores were lower in the combination therapy group compared to the group treated only with quercetin (P=0.017). Inducible nitric oxide synthase positivity scores were decreased in all treatment groups compared to the untreated groups (P=0.097, P=0.026, and P=0.004, respectively). We conclude that a combination of quercetin and methylprednisolone can be used for the specific treatment of cardiac contusion.