918 resultados para trihexyl(tetradecyl)phosphonium chloride


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Indicators of mitochondrial function were studied in two different cell culture models of cis-diamminedichloroplatinum-II (CDDP) resistance: the intrinsically resistant human ovarian cancer cell line CI-80-13S, and resistant clones (HeLa-S1a and HeLa-S1b) generated by stable expression of the serine protease inhibitor—plasminogen activator inhibitor type-2 (PAI-2), in the human cervical cancer cell line HeLa. In both models, CDDP resistance was associated with sensitivity to killing by adriamycin, etoposide, auranofin, bis[1,2-bis(diphenylphosphino)ethane]gold(I) chloride {[Au(DPPE)2]Cl}, CdCl2 and the mitochondrial inhibitors rhodamine-123 (Rhl23), dequalinium chloride (DeCH), tetraphenylphosphonium (TPP), and ethidium bromide (EtBr) and with lower constitutive levels of ATP. Unlike the HeLa clones, CI-80-13S cells were additionally sensitive to chloramphenicol, 1-methyl-4-phenylpyridinium ion (MPP+), rotenone, thenoyltrifluoroacetone (TTFA), and antimycin A, and showed poor reduction of 1-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), suggesting a deficiency in NADH dehydrogenase and/or succinate dehydrogenase activities. Total platinum uptake and DNA-bound platinum were slightly lower in CI-80-13S than in sensitive cells. The HeLa-S1a and HeLa-S1b clones, on the other hand, showed poor reduction of triphenyltetrazolium chloride (TTC), indicative of low cytochrome c oxidase activity. Total platinum uptake by HeLa-S1a was similar to HeLa, but DNA-bound platinum was much lower than for the parent cell line. The mitochondria of CI-80-13S and HeLa-S1a showed altered morphology and were fewer in number than those of JAM and HeLa. In both models, CDDP resistance was associated with less platinum accumulation and with mitochondrial and membrane defects, brought about one case with expression of a protease inhibitor which is implicated in tumor progression. Such markers may identify tumors suitable for treatment with gold phosphine complexes or other mitochondrial inhibitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Asthma is an incapacitating disease of the respiratory system, which causes extensive morbidity and mortality worldwide. Asthma affects more than 300 million people globally(Masoli et al. 2004). In Australia, it affects 10.2% of the population (Masoli et al. 2004) and causes 60,000 people to be hospitalised annually. Health care expenditure due to asthma in Australia was $606 million in 2004–2005. There are four primary biological factors that function in the initiation and exacerbation of asthma. Airway inflammation is important as it is often the first response to an airway insult, initiating the three other components: bronchoconstriction, mucus hyper-secretion and hyper-reactivity. The mediators involved in asthma are still not well understood, and current anti-inflammatory corticosteroid treatments are not effective with all asthmatics. As there is currently no cure for asthma, and airway inflammation is the primary component of the disease, it is important that we understand and investigate the mediators of airway inflammation to look for a potential cure and to produce better therapeutics to treat the inflammation. Trefoil factors (TFFs) and secretoglobins (SCGBs) are small secreted proteins involved in the mediation of inflammation and epithelial restitution. TFFs are pro-inflammatory and SCGBs anti-inflammatory by nature. The hypothesis of this study is that in response to induced acute airway inflammation, the expression of TFF1 and TFF3 will increase and expression of SCGB1A1 and SCGB3A2 will decrease in non-asthmatics (N-A), asthmatics medicating with bronchodilators (A-BD) and asthmatics medicating with corticosteroids (A-ST). When comparing the three groups, we expect to see higher expression of the TFFs in the A-BD group compared to the N-A and A-ST groups, indicating that inflammation is mediated by TFFs in asthma and that corticosteroid medication controls their expression as part of the control of inflammation. We expect to see the opposite with SCGBs, with a greater decrease in the A-BD group compared to the other two groups, suggesting that the A-BD group has the least anti-inflammatory activity in response to inflammatory insult. Epigenetic modification plays a role in the regulation of genes that initiate disease states such as inflammatory conditions and cancers. Histone acetylation is one such modification, which involves the acetylation of histones in chromatin by histone acetyltransferases (HATs). This increases the transcription of genes involved with inflammation or enrols histone deacetylases (HDACs) to down-regulate the transcription of inflammatory genes. These HATs and HDACs work in a homeostatic fashion; however, in the event of inflammation, increased HAT activity can stimulate further inflammation, which is believed to be the mechanism involved in some inflammatory diseases. This study hypothesises that in response to inflammation, the expression of HDACs (HDAC1-5) will decrease and the expression of HATs (NCOA1-3, HAT-1 and CREBBP) will increase in all groups. When comparing the expression between the groups, it was expected that a greater decrease in HDACs and a greater increase in HATs will be seen in the A-BD group compared to the other two groups. This would identify histone acetylation as a mechanism involved in the inflammatory condition of asthma and indicate that corticosteroids may treat the inflammation in asthma at least in part by controlling histone acetylation. The aim of the project was to compare the expression of inflammatory genes TFF1, TFF3, SCGB1A1 and SCGB3A2, as well as to compare the gene expression of HDAC1-5, NCOA1-3, HAT-1 and CREBBP within and between N-A (n=15), A-BD (n=15) and A-ST (n=15) groups in response to inflammation. This was performed by collecting airway cells and proteins by sputum induction in three sessions. The sessions were coordinated into an initial baseline collection (SI-1), followed by a second session at least one week later (SI-2) and a third session, six hours after SI-2 to collect a sample containing the resultant acute inflammation caused in SI-2 (SI-3). Analysis of the SI-1 and SI-2 samples in all three groups had high amounts of variability between samples. The samples were taken at least one weak apart and the environmental stimuli on each participant outside of the testing sessions could not be controlled. For this reason, the SI-1 samples were not used for analysis; instead SI-2 and SI-3 samples were compared as they were same-day collections, reducing the probability of differences being due to anything other than the sputum induction. The gene expressions of the TFFs, SCGBs, HDACs and HATs were analysed using real-time PCR. Western blot analysis was performed to analyse the protein concentrations of the TFFs and SCGBs in secreted fractions of the sputum collection. Both the secreted and intracellular protein fractions collected from the sputum inductions for pre- and post-inflammation (SI-2, SI-3) samples of the N-A and A-BD groups were analysed using a proteomic method called iTRAQ. This allowed the comparison of the change in protein expression as a result of airway inflammation in each group. This technique was used as a discovery method to identify novel proteins that are modulated by induced acute airway inflammation. Any proteins of interest would then be further validated and used for future research. Inflammation was achieved in the SI-3 samples of the N-A group with a 21% unit increase in % neutrophils compared to SI-2 (p=0.01). The N-A group had a marked 5.5-fold decrease in HDAC1 gene expression in SI-3 compared to SI-2 (p=0.03). No differences were seen in any of the TFFs, SCGBs or any of the rest of the HDACs and HATs. Western blot data did not display any significant changes in the protein levels of the TFFs and SCGBs analysed. However, non-significant analysis of the data displayed increases in TFF1 and TFF3, and decreases in SCGB1A1 and SCGB3A2 for the majority of SI-3 samples compared to SI-2. The A-BD group also presented a marked increase in neutrophils in the SI-3 samples compared to SI-2 (27% unit increase, p=0.04). The A-BD group had a significant increase in TFF3 and SCGB1A1 gene expression concomitant with induced acute airway inflammation. A 7.3-fold increase in TFF3 (p=0.05) in SI-3 indicated that TFF3 is linked to inflammation in asthmatics. A 2.8-fold increase in SCGB1A1 (p=0.03) indicated that this gene is also up-regulated, suggesting that this SCGB is expressed to try to combat induced acute airway inflammation. No significant changes were seen in any of the other genes analysed. Western blot data did not display any significant changes in the protein levels of the TFFs and SCGBs analysed. However, non-significant analysis of the data displayed an increase in TFF1 and TFF3, and a decrease in SCGB1A1 and SCGB3A2 in SI-3, similar to that seen in the N-A group. The A-ST group was different from the A-BD group, characterised by the use of inhaled corticosteroid medication to treat asthma symptoms. Inhaled corticosteroids are known to treat asthma symptoms through the control of inflammation. Therefore, it was expected that corticosteroid medication would also control the expression of TFFs, SCGBs, HATs and HDACs. Gene expression results only identified a 7.6-fold decrease in HDAC2 expression in SI-3 (p=0.001), which is proposed to be due to the up-regulation of HDAC2 protein that is known to be a function of corticosteroid use. Western blot data did not display any significant changes in the protein levels of the TFFs and SCGBs analysed. The gene expression in SI-2 and SI-3 in each group was compared. When comparing the A-BD group to the N-A group, a 9-fold increase in TFF3 (p=0.008) and a 34-fold increase in SCGB1A1 (p=0.03) were seen in the SI-3 samples. Comparisons of the A-ST group to the N-A group had an increased expression in SI-2 samples for HDAC5 (3.6-fold, p=0.04), NCOA2 (8.5-fold, p=0.04), NCOA3 (17-fold, p=0.01), HAT-1 (36-fold, p=0.003) and CREBBP (13-fold, p=0.001). The SI-3 samples in the A-ST group compared to the N-A group had increased expression for HDAC1 (6.4-fold, p=0.04), HDAC5 (5.2-fold, p=0.008), NCOA2 (9.6-fold, p=0.03), NCOA3 (16-fold, p=0.06), HAT-1 (41-fold, p<0.001) and CREBBP (31-fold, p=0.001). Comparisons of the A-ST group to the A-BD group had SI-2 increases in HDAC1 (3.8-fold, p=0.03), NCOA3 (4.5-fold, p=0.03), HAT-1 (5.3-fold, p=0.01) and CREBBP (23-fold, p=0.001), while SI-3 comparisons saw a decrease in HDAC2 (41-fold, p=0.008) and increases in HAT-1 (4.3-fold, p=0.003) and CREBBP (40-fold, p=0.001). Results showed that TFF3 and SCGB1A1 expression is higher in asthmatics than non-asthmatics and that histone acetylation is more active in the A-ST group than either the N-A or A-BD group, which suggests that histone acetylation activity may be positively correlated with asthma severity. The iTRAQ proteomic analysis of the secreted protein samples identified the SCGB1A1 protein and found it to be decreased in both the N-A and A-BD groups post-inflammation, but significantly so only in the A-BD group. Although no significant results were obtained from the western blot data, both groups displayed a decrease in SCGB1A1 concentration in SI-3 samples, suggesting a correlation with the proteomic data. Only 31 peptides were identified from the secreted samples. The intracellular iTRAQ analysis successfully identified 664 peptides, eight of which had differential expression in association with induced acute airway inflammation. Significant increases were seen in the A-BD group in SI-3 compared to SI-2 than in the N-A group in chloride intracellular channel protein 1, keratin-19, eosinophil cationic protein, calnexin, peroxiredoxin-5, and ATP-synthase delta subunit, while decreases were seen in cystatin-A and mucin-5AC. The iTRAQ analysis was only a discovery measure and further validation must be performed. In summary, the expression of TFFs and SCGBs differed between non-asthmatics and asthmatics. It is clear that TFF3 is active in the airway inflammation associated with asthma as indicated by an increase associated with inflammation in the A-BD group compared to the N-A group. Results for HDAC and HAT genes showed high HAT expression in the A-ST group compared to the N-A and A-BD groups, suggesting that histone acetyltransferases may be responsible for the characteristic unregulated inflammatory symptoms of asthmatics taking corticosteroids. Interestingly, corticosteroid medication did not seem to silence the expression of the analysed HAT genes, which indicates that corticosteroids may not control inflammation by direct regulation of HATs, but instead by competition, most probably with HDAC2 protein. As a discovery tool, iTRAQ is a potent method to both identify and compare the concentration of proteins between samples. The method is a powerful first step into the identification of novel proteins that are regulated in response to different treatments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of 3 tests, intravenous edrophonium chloride, EMG, and acetylcholine receptor antibody testing, were compared in patients with generalised and ocular myasthenia gravis. None of the 3 tests was positive in any patient with a diagnosis other than myasthenia. However, equivocal results were obtained with edrophonium and EMG testing in some patients with myasthenia gravis and in patients with other diseases. It is concluded from this survey that antibody and edrophonium testing were equally efficient in detecting generalised myasthenia gravis. Edrophonium testing was superior in ocular myasthenia gravis. Although the yields from each test varied, all 3 tests were needed for the evaluation of some myasthenia gravis patients as each test may provide additional information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scanning electrochemical microscopy (SECM), in the substrate generation–tip collection (SG-TC) mode, has been used to detect the cuprous ion intermediate formed during the course of electrodeposition of Cu metal from aqueous solution. Addition of chloride is confirmed to strongly stabilize the ion in aqueous solution and enhance the rate of Cu electrodeposition. This SECM method in the SG-TC mode offers an alternative to the rotating ring disk electrode (RRDE) technique for in situ studies on the effect of plating bath additives in metal electrodeposition. An attractive feature of the SECM relative to the RRDE method is that it allows qualitative aspects of the electrodeposition process to be studied in close proximity to the substrate in a simple and direct fashion using an inexpensive probe, and without the need for forced convection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lower carat gold alloys, specifically 9 carat gold alloys, containing less than 40 % gold, and alloying additions of silver, copper and zinc, are commonly used in many jewellery applications, to offset high costs and poor mechanical properties associated with pure gold. While gold is considered to be chemically inert, the presence of active alloying additions raises concerns about certain forms of corrosion, particularly selective dissolution of these alloys. The purpose of this study was to systematically study the corrosion behaviour of a series of quaternary gold–silver–copper–zinc alloys using dc potentiodynamic scanning in saline (3.5 % NaCl) environment. Full anodic/cathodic scans were conducted to determine the overall corrosion characteristics of the alloy, followed by selective anodic scans and subsequent morphological and compositional analysis of the alloy surface and corroding media to determine the extent of selective dissolution. Varying degrees of selective dissolution and associated corrosion rates were observed after anodic polarisation in 3.5 % NaCl, depending on the alloy composition. The corrosion behaviour of the alloys was determined by the extent of anodic reactions which induce (1) formation of oxide scales on the alloy surface and or (2) dissolution of Zn and Cu species. In general, the improved corrosion characteristics of alloy #3 was attributed to the composition of Zn/Cu in the alloy and thus favourable microstructure promoting the formation of protective oxide/chloride scales and reducing the extent of Cu and Zn dissolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of layered double hydroxides (LDHs) and thermally activated LDHs for the removal of various fluorine (F-, BF-4), chlorine (Cl-,ClO-4), bromine (Br-, BrO-3) and iodine (I-, IO-3) species from aqueous solutions has been reviewed in this article. LDHs and thermally activated LDHs were able to significantly reduce the concentration of selected anions in laboratory scale experiments. The M2+:M3+ cation ratio of the LDH adsorbent was an important factor which influenced anion uptake. Though LDHs were able to remove some target anion species through anion exchange and surface adsorption thermal activation and reformation generally produced better results. The presence of competing anions including carbonate, phosphate and sulphate had a significant impact on uptake of the target anion as LDHs typically exhibit lower affinity towards monovalent anions compared to anions with multiple charges. The removal of fluoride and perchlorate from aqueous solution by a continuous flow system utilising fixed bed columns packed with LDH adsorbents has also been investigated. The adsorption capacity of the columns at breakpoint was heavily dependent on the flow rate and lower than result reported for the corresponding batch methods. There is still considerable scope for future research on numerous topics summarised in this article.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this review is to showcase the present capabilities of ambient sampling and ionisation technologies for the analysis of polymers and polymer additives by mass spectrometry (MS) while simultaneously highlighting their advantages and limitations in a critical fashion. To qualify as an ambient ionisation technique, the method must be able to probe the surface of solid or liquid samples while operating in an open environment, allowing a variety of sample sizes, shapes, and substrate materials to be analysed. The main sections of this review will be guided by the underlying principle governing the desorption/extraction step of the analysis; liquid extraction, laser ablation, or thermal desorption, and the major component investigated, either the polymer itself or exogenous compounds (additives and contaminants) present within or on the polymer substrate. The review will conclude by summarising some of the challenges these technologies still face and possible directions that would further enhance the utility of ambient ionisation mass spectrometry as a tool for polymer analysis. (C) 2013 Elsevier B. V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The double Friedel–Crafts acylation of readily accessible biaryls with oxalyl chloride delivers the respective phenanthrene-9,10-diones, providing an alternative to the traditional methods, which require harsh oxidizing conditions and multistep sequences. This simple method allows the synthesis of various symmetrical and non-symmetrical targets, and is even effective for the synthesis of the parent ring system from (unactivated) biphenyl.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This investigation used a combination of techniques, such as X-ray diffraction, inductively coupled plasma optical emission spectroscopy and infrared spectroscopy, to determine the dissolution mechanisms of the Bayer precipitate and the associated rate of dissolution in acetic, citric and oxalic acid environments. The Bayer precipitate is a mixture of hydrotalcite, calcium carbonate and sodium chloride that forms during the seawater neutralisation of Bayer liquors (waste residue of the alumina industry). The dissolution rate of a Bayer precipitate is found to be dependent on (1) the strength of the organic acid and (2) the number of donating H+ ions. The dissolution mechanism for a Bayer precipitate consists of several steps involving: (1) the dissolution of CaCO3, (2) formation of whewellite (calcium oxalate) when oxalic acid is used and (3) multiple dissolution steps for hydrotalcite that are highly dependent on the pH of solution. The decomposition of the Al–OH hydrotalcite layers resulted in the immediate formation of Al(OH)3, which is stable until the pH decreases below 5.5. This investigation has found that the Bayer precipitate is stable across a wide pH range in the presence of common organic acids found in the rhizosphere, and that initial decomposition steps are likely to be beneficial in supporting plant growth through the release of nutrients such as Ca2þ and Mg2þ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mechanochemical synthesis process has been used to synthesise aluminium nanoparticles. The aluminium is synthesised via a solid state chemical reaction which is initiated inside a ball mill at room temperature between either lithium (Li) or sodium (Na) metal which act as reducing agents with unreduced aluminium chloride (AlCl3). The reaction product formed consists of aluminium nanoparticles embedded within a by-product salt phase (LiCl or NaCl, respectively). The LiCl is washed with a suitable solvent resulting in aluminium (Al) nanoparticles which are not oxidised and are separated from the byproduct phase. Synthesis and washing was confirmed using X-ray diffraction (XRD). Nanoparticles were found to be ∼25–100nm from transmission electron microscopy (TEM) and an average size of 55nm was determined fromsmall angle X-ray scattering (SAXS) measurements. As synthesised Al/NaCl composites, washed Al nanoparticles, and purchased Al nanoparticles were deuterium (D2) absorption tested up to 2 kbar at a variety of temperatures, with no absorption detected within system resolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The binding kinetics of NF-kappaB p50 to the Ig-kappaB site and to a DNA duplex with no specific binding site were determined under varying conditions of potassium chloride concentration using a surface plasmonresonance biosensor. Association and dissociation rate constants were measured enabling calculation of the dissociation constants. Under previously established high affinity buffer conditions, the k a for both sequences was in the order of 10(7) M-1s-1whilst the k d values varied 600-fold in a sequence-dependent manner between 10(-1) and 10(-4 )s-1, suggesting that the selectivity of p50 for different sequences is mediated primarily through sequence-dependent dissociation rates. The calculated K D value for the Ig-kappaB sequence was 16 pM, whilst the K D for the non-specific sequence was 9.9 nM. As the ionic strength increased to levels which are closer to that of the cellular environment, the binding of p50 to the non-specific sequence was abolished whilst the specific affinity dropped to nanomolar levels. From these results, a mechanism is proposed in which p50 binds specific sequences with high affinity whilst binding non-specific sequences weakly enough to allow efficient searching of the DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of two different DNA minor groove binding molecules, Hoechst 33258 and distamycin A, on the binding kinetics of NF-κB p50 to three different specific DNA sequences was studied at various salt concentrations. Distamycin A was shown to significantly increase the dissociation rate constant of p50 from the sequences PRDII (5′-GGGAAATTCC-3′) and Ig-κ B (5′-GGGACTTTCC-3′) but had a negligible effect on the dissociation from the palindromic target-κB binding site (5′-GGGAATTCCC-3′). By comparison, the effect of Hoechst 33258 on binding of p50 to each sequence was found to be minimal. The dissociation rates for the protein–DNA complexes increased at higher potassium chloride concentrations for the PRDII and Ig-κB binding motifs and this effect was magnified by distamycin A. In contrast, p50 bound to the palindromic target-κB site with a much higher intrinsic affinity and exhibited a significantly reduced salt dependence of binding over the ionic strength range studied, retaining a KD of less than 10 pM at 150 mM KCl. Our results demonstrate that the DNA binding kinetics of p50 and their salt dependence is strongly sequence-dependent and, in addition, that the binding of p50 to DNA can be influenced by the addition of minor groove-binding drugs in a sequence-dependent manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tricalcium aluminate, hydrocalumite and residual lime have been identified as reversion contributing compounds after the seawater neutralisation of bauxite refinery residues. The formation of these compounds during the neutralisation process is dependent on the concentration of residual lime, pH and aluminate concentrations in the residue slurry. Therefore, the effect of calcium hydroxide (CaOH2) in bauxite refinery liquors was analysed and the degree of reversion monitored. This investigation found that the dissolution of tricalcium aluminate, hydrocalumite and CaOH2 caused reversion and continued to increase the pH of the neutralised residue until a state of equilibrium was reached at a solution pH of 10.5. The dissolution mechanism for each compound has been described and used to demonstrate the implications that this has on reversion in seawater neutralised Bayer liquor. This investigation describes the limiting factors for the dissolution and formation of these trigger compounds as well as confirming the formation of Bayer hydrotalcite (mixture of Mg6Al2(OH)16(CO32-,SO42-)•xH2O and Mg8Al2(OH)12(CO32-,SO42-)•xH2O) as the primary mechanism for reducing reversion during the neutralisation process. This knowledge then allowed for a simple but effective method (addition of magnesium chloride or increased seawater to Bayer liquor ratio) to be devised to reduce reversion occurring after the neutralisation of Bayer liquors. Both methods utilise the formation of Bayer hydrotalcite to permanently (stable in neutralised residue) remove hydroxyl (OH-) and aluminate (Al(OH)4-) ions from solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mineral sulphohalite – Na6(SO4)2FCl is a rare sodium halogen sulphate and occurs associated with evaporitic deposits. Sulphohalite formation is important in saline evaporites and in pipe scales. Sulphohalite is an anhydrous sulphate–halide with an apparent variable anion ratio of formula Na6(SO4)2FCl. Such a formula with oxyanions lends itself to vibrational spectroscopy. The Raman band at 1003 cm−1 is assigned to the (SO4)2− ν1 symmetric stretching mode. Shoulders to this band are found at 997 and 1010 cm−1. The low intensity Raman bands at 1128, 1120 and even 1132 cm−1 are attributed to the (SO4)2− ν3 antisymmetric stretching vibrations. Two symmetric sulphate stretching modes are observed indicating at least at the molecular level the non-equivalence of the sulphate ions in the sulphohalite structure. The Raman bands at 635 and 624 cm−1 are assigned to the ν4 SO42− bending modes. The ν2 (SO4)2− bending modes are observed at 460 and 494 cm−1. The observation of multiple bands supports the concept of a reduction in symmetry of the sulphate anion from Td to C3v or even C2v. No evidence of bands attributable to the halide ions was found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comprehensive study was undertaken involving chemical (inorganic and organic) and bioanalytical (a suite of 14 in vitro bioassays) assessments of coal seam gas (coal bed methane) associated water (CSGW) in Queensland, Australia. CSGW is a by-product of the gas extraction process and is generally considered as water of poor quality. This was done to better understand what is known about the potential biological and environmental effects associated with the organic constituents of CSGW in Australia. In Queensland, large amounts of associated water must be withdrawn from coal seams to allow extraction of the gas. CSGW is disposed of via release to surface water, reinjected to groundwater or reused for irrigation of crops or pasture, supplied for power station cooling and or reinjected specifically to augment drinking water aquifers. Groundwater samples were collected from private wells tapping into the Walloon Coal Measures, the same coal aquifer exploited for coal seam gas production in the Surat Basin, Australia. The inorganic characteristics of these water samples were almost identical to the CSGW entering the nearby gas company operated Talinga-Condabri Water Treatment Facility. The water is brackish with a pH of 8 to 9, high sodium, bicarbonate and chloride concentrations but low calcium, magnesium and negligible sulphate concentrations. Only low levels of polyaromatic hydrocarbons (PAHs) were detected in the water samples, and neither phenols nor volatile organic compounds were found. Results from the bioassays showed no genotoxicity, protein damage, or activation of hormone receptors (with the exception of the estrogen receptor). However, five of the 14 bioassays gave positive responses: an arylhydrocarbon-receptor gene activation assay (AhR-CAFLUX), estrogenic endocrine activity (ERα-CALUX), oxidative stress response (AREc32), interference with cytokine production (THP1-CPA) and non-specific toxicity (Microtox). The observed effects were benchmarked against known water sources and were similar to secondary treated wastewater effluent, stormwater and surface water. As mixture toxicity modelling demonstrated, the detected PAHs explained less than 5% of the observed biological effects.