946 resultados para total soluble solids content
Resumo:
Com a demanda por energia elétrica nos dias atuais e a grande quantidade de bacias hidrográficas presentes no Brasil, a geração de energia hidrelétrica se tornou a principal forma de suprimento. Dentre as diversas mudanças ocorridas em represamento de rios, a redução na vazão da água influencia no acúmulo de nutrientes afetando diretamente na qualidade da água, podendo acarretar em um processo denominado eutrofização, caracterizado pelo aumento na quantidade de nutrientes em um sistema e contribuindo para o desenvolvimento de produtores primários (fitoplâncton e macrófitas aquáticas) em níveis acima do crescimento natural. Para identificar o estado de trofia dos reservatórios pertencentes ao Complexo Hidrelétrico de Ribeirão das Lajes (RJ) foi utilizada a metodologia de Lu e Lo (2002) de avaliação trófica fuzzy (ou difusa) sintética e não sintética, além da avaliação trófica através do índice de estado trófico de Carlson (1977). As classes de estado trófico utilizadas na metodologia é da OECD (1982) e utiliza transparência, concentrações de fósforo total e de clorofila-a como variáveis. Outras variáveis limnológicas como temperatura, oxigênio dissolvido, condutividade elétrica, turbidez, pH e sólidos dissolvidos totais foram utilizadas para caracterização dos reservatórios. As coletas foram realizadas em três momentos, no período seco de 2011, no período chuvoso de 2012 e no período seco de 2012. As análises fuzzy não sintéticas apontaram os reservatórios de Santana, Vigário e Ponte Coberta como oligotrófico/eutrófico durante o período de estudo. O reservatório de Ribeirão das Lajes foi classificado como oligotrófico nos períodos secos no ano de 2011 e 2012, e como mesotrófico no período chuvoso de 2012, assim como o reservatório de Tocos. Foram observadas diferenças significativas entre o período seco e o chuvoso em relação às concentrações de clorofila-a, transparência e turbidez, demonstrando influência sazonal no grau de trofia dos reservatórios, uma vez que clorofila-a e transparência são variáveis utilizadas em índices de estado trófico
Resumo:
Com o desenvolvimento da espécie humana, a sociedade humana passou demandar quantidades cada vez maiores de diversos elementos naturais, principalmente a água. Por estar presente em uma pequena quantidade no planeta (3%), com relação a toda hidrosfera, as águas disponíveis para consumo humano (Ex: Mananciais) são as que mais sofrem com a ação antrópica. A degradação destes recursos se dá por fatores como: poluição, desperdício e falta de políticas públicas sobre conservação dos recursos hídricos. Buscando a implementação de estratégias para a melhor gestão dos recursos hídricos, a utilização de águas pluviais como fonte hídrica alternativa, ganha importância diante desse cenário. Além de uma fonte hídrica de fácil acesso em muitas regiões (com média anual de precipitação em 1589 mm na região da Tijuca Alerta Rio, 2013), estudos demonstram que sua qualidade permite sua utilização em atividades não potáveis, resultando na economia de águas que são tratadas e destinadas para consumo humano. Visando colaborar com as questões expostas anteriormente, a presente dissertação de mestrado buscou avaliar a qualidade das águas de chuva em uma determinada região e os fatores que possam interferir na qualidade das águas pluviais, como: tipo de material da superfície de captação, proximidade a focos de poluição atmosférica e período de estiagem antecedente ao evento pluviométrico. Para tal tarefa, foi instalado um sistema de captação de águas pluviais no Instituto de Aplicação Fernando Rodrigues da Silveira, localizado no bairro do Rio Comprido, região norte da cidade do Rio de Janeiro. Os parâmetros físico-químicos para qualidade da água pH, turbidez, temperatura, oxigênio dissolvido, sólidos totais dissolvidos, potencial de oxi-redução e condutividade foram analisados com o auxílio da sonda multiparâmetro. Ao correlacionar a presença de sólidos na água de chuva com os períodos de estiagem, verificou-se que quanto maior o período de seca, maior a quantidade de sólidos nas amostras. Com relação aos marcos regulatórios (Portaria 2914/2011, MS; Padrões de potabilidade, OMS; CONAMA 357 e NBR 15.527) , os resultados para estes parâmetros ficaram de acordo com os limites exigidos pelas mesmas, exceto o pH. Com a análise dos resultados, recomenda-se estudos para determinar quais fatores podem estar interferindo na acidificação das águas coletadas no estudo.
Resumo:
O aumento da prevalência da obesidade e osteoporose, bem como a identificação de mecanismos comuns que ligam a osteogênese e a adipogênese, sugerem que a obesidade e osteoporose podem ser distúrbios relacionados, e além disso, ambos podem ter suas origens no início da vida. Em 3 modelos diferentes de plasticidade ontogenética foi observado obesidade na vida adulta. Sendo assim, o objetivo deste trabalho foi investigar o impacto desses 3 modelos, o desmame precoce mecânico (DPM) e o farmacológico (DPF), e a supernutrição neonatal (SN) no tecido ósseo da prole durante o desenvolvimento. Para tanto, 2 experimentos foram realizados. No experimento 1, ratas lactantes foram divididas em 3 grupos: controle - os filhotes tiveram livre acesso ao leite durante toda a lactação; DPM - as mães foram envolvidas com uma atadura nos últimos 3 dias de lactação; DPF - as mães foram tratadas com bromocriptina (0,5 mg/duas vezes/dia) 3 dias antes do desmame padrão. No experimento 2, o tamanho da ninhada foi reduzido para 3 filhotes machos no 3o dia de lactação até o desmame (SN); o grupo controle permaneceu com 10 filhotes durante toda a lactação. Realizou-se absorciometria de raios-x de dupla energia, tomografia computadorizada, microtomografia computadorizada, teste biomecânico e análises séricas. Os dados foram considerados significativos quando P<0,05. No experimento 1, ao desmame, os filhotes DPM e DPF apresentaram menor massa corporal, massa gorda, densidade mineral óssea total (DMO), conteúdo mineral ósseo total (CMO), área óssea e osteocalcina sérica, e maior telopeptídeo carboxi-terminal do colágeno tipo I (CTX-I). O cálcio ionizado sérico foi menor apenas na prole DPM, a 25-hidroxivitamina D (25(OH)D) foi maior e o PTH menor apenas na prole DPF. Aos 180 dias, as proles DPM e DPF apresentaram maior massa corporal, maior massa de gordura visceral, hiperleptinemia, maior 25(OH)D e menor CTX-I. Ambos os grupos apresentaram aumento da DMO total, do CMO, da DMO da coluna vertebral e da área óssea aos 150 e 180 dias de idade. Nas avaliações ósseas individuais, as proles DPM e DPF também apresentaram aumento da DMO do fêmur e da vértebra lombar, da radiodensidade da cabeça femoral e do corpo vertebral; melhora da microarquitetura trabecular óssea e da resistência óssea. No experimento 2, observamos aumento da massa corporal, da massa gorda e da massa magra, do CMO e da área óssea no grupo SN desde o desmame até a idade adulta. Aos 180 dias, a prole SN também apresentou aumento da DMO total, da DMO do fêmur e da vértebra lombar, da radiodensidade da cabeça femoral e do corpo vertebral; melhora da microarquitetura trabecular óssea e da resistência óssea, maior osteocalcina e menor CTX-I. Demonstramos que, apesar de fatores de imprinting opostos, ambos os modelos causam melhora da massa, do metabolismo, da qualidade e da resistência óssea. Porém, parece que este efeito protetor sobre o tecido ósseo não é um resultado direto da programação deste tecido, mas sim consequência das alterações fisiopatológicas da obesidade programada pelos três modelos.
Resumo:
Two large hydrologic issues face the Kings Basin, severe and chronic overdraft of about 0.16M ac-ft annually, and flood risks along the Kings River and the downstream San Joaquin River. Since 1983, these floods have caused over $1B in damage in today’s dollars. Capturing flood flows of sufficient volume could help address these two pressing issues which are relevant to many regions of the Central Valley and will only be exacerbated with climate change. However, the Kings River has high variability associated with flow magnitudes which suggests that standard engineering approaches and acquisition of sufficient acreage through purchase and easements to capture and recharge flood waters would not be cost effective. An alternative approach investigated in this study, termed On-Farm Flood Flow Capture, involved leveraging large areas of private farmland to capture flood flows for both direct and in lieu recharge. This study investigated the technical and logistical feasibility of best management practices (BMPs) associated with On-Farm Flood Flow Capture. The investigation was conducted near Helm, CA, about 20 miles west of Fresno, CA. The experimental design identified a coordinated plan to determine infiltration rates for different soil series and different crops; develop a water budget for water applied throughout the program and estimate direct and in lieu recharge; provide a preliminary assessment of potential water quality impacts; assess logistical issues associated with implementation; and provide an economic summary of the program. At check locations, we measured average infiltration rates of 4.2 in/d for all fields and noted that infiltration rates decreased asymptotically over time to about 2 – 2.5 in/d. Rates did not differ significantly between the different crops and soils tested, but were found to be about an order of magnitude higher in one field. At a 2.5 in/d infiltration rate, 100 acres are required to infiltrate 10 CFS of captured flood flows. Water quality of applied flood flows from the Kings River had concentrations of COC (constituents of concern; i.e. nitrate, electrical conductivity or EC, phosphate, ammonium, total dissolved solids or TDS) one order of magnitude or more lower than for pumped groundwater at Terranova Ranch and similarly for a broader survey of regional groundwater. Applied flood flows flushed the root zone and upper vadose zone of nitrate and salts, leading to much lower EC and nitrate concentrations to a depth of 8 feet when compared to fields in which more limited flood flows were applied or for which drip irrigation with groundwater was the sole water source. In demonstrating this technology on the farm, approximately 3,100 ac-ft was diverted, primarily from April through mid-July, with about 70% towards in lieu and 30% towards direct recharge. Substantial flood flow volumes were applied to alfalfa, wine grapes and pistachio fields. A subset of those fields, primarily wine grapes and pistachios, were used primarily to demonstrate direct recharge. For those fields about 50 – 75% of water applied was calculated going to direct recharge. Data from the check studies suggests more flood flows could have been applied and infiltrated, effectively driving up the amount of water towards direct recharge. Costs to capture flood flows for in lieu and direct recharge for this project were low compared to recharge costs for other nearby systems and in comparison to irrigating with groundwater. Moreover, the potentially high flood capture capacity of this project suggests significant flood avoidance costs savings to downstream communities along the Kings and San Joaquin Rivers. Our analyses for Terranova Ranch suggest that allocating 25% or more flood flow water towards in lieu recharge and the rest toward direct recharge will result in an economically sustainable recharge approach paid through savings from reduced groundwater pumping. Two important issues need further consideration. First, these practices are likely to leach legacy salts and nitrates from the unsaturated zone into groundwater. We develop a conceptual model of EC movement through the unsaturated zone and estimated through mass balance calculations that approximately 10 kilograms per square meter of salts will be flushed into the groundwater through displacing 12 cubic meters per square meter of unsaturated zone pore water. This flux would increase groundwater salinity but an equivalent amount of water added subsequently is predicted as needed to return to current groundwater salinity levels. All subsequent flood flow capture and recharge is expected to further decrease groundwater salinity levels. Second, the project identified important farm-scale logistical issues including irrigator training; developing cropping plans to integrate farming and recharge activities; upgrading conveyance; and quantifying results. Regional logistical issues also exist related to conveyance, integration with agricultural management, economics, required acreage and Operation and Maintenance (O&M).
Resumo:
A study was initiated with field work in May 2007 to assess the status of ecological condition and stressor impacts throughout the U.S. continental shelf off South Florida, focusing on soft-bottom habitats, and to provide this information as a baseline for evaluating future changes due to natural or human-induced disturbances. The boundaries of the study region extended from Anclote Key on the western coast of Florida to West Palm Beach on the eastern coast of Florida, inclusive of the Florida Keys National Marine Sanctuary (FKNMS), and from navigable depths along the shoreline seaward to the shelf break (~100m). The study incorporated standard methods and indicators applied in previous national coastal monitoring programs — U.S. Environmental Protection Agency’s (EPA) Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA) — including multiple measures of water quality, sediment quality, and biological condition. Synoptic sampling of the various indicators provided an integrative weight-of-evidence approach to assessing condition at each station and a basis for examining potential associations between presence of stressors and biological responses. A probabilistic sampling design, which included 50 stations distributed randomly throughout the region, was used to provide a basis for estimating the spatial extent of condition relative to the various measured indicators and corresponding assessment endpoints (where available). The study was conducted through a large cooperative effort by National Oceanic and Atmospheric Administration (NOAA)/National Centers for Coastal Ocean Science (NCCOS), EPA, U.S. Geological Survey (USGS), NOAA/Oceanic and Atmospheric Research (OAR)/Atlantic Oceanographic and Meteorological Laboratory in Miami, FKNMS, and the Florida Fish and Wildlife Conservation Commission (FWC). The majority of the South Florida shelf had high levels of dissolved oxygen (DO) in near-bottom water (> 5 mg L-1) indicative of “good” water quality.. DO levels in bottom waters exceeded this upper threshold at 98.8% throughout the coastal-ocean survey area. Only 1.2% of the region had moderate DO levels (2-5 mg/L) and no part of the survey area had DO <2.0 mg/L. In addition, offshore waters throughout the region had relatively low levels of total suspended solids (TSS), nutrients, and chlorophyll a indicative of oligotrophic conditions. Results suggested good sediment quality as well. Sediments throughout the region, which ranged from sands to intermediate muddy sands, had low levels of total organic carbon (TOC) below bioeffect guidelines for benthic organisms. Chemical contaminants in sediments were also mostly at low, background levels. For example, none of the stations had chemicals in excess of corresponding Effects-Range Median (ERM) probable bioeffect values or more than one chemical in excess of lower-threshold Effects-Range Low (ERL) values. Cadmium was the only chemical that occurred at moderate concentrations between corresponding ERL and ERM values. Sixty fish samples from 28 stations were collected and analyzed for chemical contaminants. Eleven of these samples (39% of sites) had moderate levels of contaminants, between lower and upper non-cancer human-health thresholds, and ten (36% of sites) had high levels of contaminants above the upper threshold.
Resumo:
Porphyrin metabolic disruption from exposure to xenobiotic contaminants such as heavy metals, dioxins, and aromatic hydrocarbons can elicit overproduction of porphyrins. Measurement of porphyrin levels, when used in conjunction with other diagnostic assays, can help elucidate an organism’s physiological condition and provide evidence for exposure to certain toxicants. A sensitive microplate fluorometric assay has been optimized for detecting total porphyrin levels in detergent solubilized protein extracts from symbiotic, dinoflagellate containing cnidarian tissues. The denaturing buffer used in this modified assay contains a number of potentially interfering components (e.g., sodium dodecyl sulfate (SDS), dithiothreitol (DTT), protease inhibitors, and chlorophyll from the symbiotic zooxanthellae), which required examination and validation. Examination of buffer components were validated for use in this porphyrin assay; while the use of a specific spectrofluorometric filter (excitation 400 ± 15 nm; emission 600 ± 20 nm) minimized chlorophyll interference. The detection limit for this assay is 10 fmol of total porphyrin per μg of total soluble protein and linearity is maintained up to 5000 fmol. The ability to measure total porphyrins in a SDS protein extract now allows a single extract to be used in multiple assays. This is an advantage over classical methods, particularly when tissue samples are limiting, as is often the case with coral due to availability and collection permit restrictions.
Resumo:
This study assessed the physico-chemical quality of River Ogun, Abeokuta, Ogun state, Southwestern Nigeria. Four locations were chosen spatially along the water course to reflect a consideration of all possible human activities that are capable of changing the quality of river water. The water samples were collected monthly for seven consecutive months (December 2011 – June 2012) at the four sampling stations. pH, air temperature (℃), water temperature (℃), conductivity (µs/cm) and total dissolved solids (mg/L) were conducted in-situ with the use of HANNA Combo pH and EC multi meter Hi 98129 and Mercury-in-glass thermometer while dissolved oxygen (mg/L), nitrate (mg/L), phosphate (mg/L), alkalinity (mg/L) and hardness (mg/L) were determined ex-situ using standard methods. Results showed that dissolved oxygen, hydrogen ion concentration, total hardness and nitrate were above the maximum permissible limit of National Administration for Food, Drugs and Control (NAFDAC), Standard Organization of Nigeria (SON), Federal Environmental Protection Agency (FEPA), United States Environmental Protection Agency (USEPA), European Union (EU) and World Health Organization (WHO) for drinking water during certain months of the study period. Results also showed that water temperature and conductivity were within the permissible limits of all the standards excluding FEPA. However, total dissolved solids and alkalinity were within the permissible limits of all the standards. Adejuwon and Adelakun, (2012) also reported similar findings on Rivers Lala, Yobo and Agodo in Ewekoro local government area of Ogun state, Nigeria. Since most of the parameters measured were above the maximum permissible limits of the national and international standards, it can be concluded that the water is unfit for domestic uses, drinking and aquacultural purposes and therefore needs to be treated if it is to be used at all. The low dissolved oxygen values for the first four months was too low i.e. < 5 mg/L. This is most likely as a result of the amount of effluents discharged into the river. To prevent mass extinction of aquatic organisms due to anoxic conditions, proper regulations should be implemented to reduce the organic load the river receives.
Resumo:
Major controls on river salinity (total dissolved solids) in the western United States are climate, geology, and human activity. Climate, in general, influences soil-river salinity via salt-balance variations. When climate becomes wetter, river discharge increases and soil-river salinity decreases; when climate becomes drier river discharge decreases and soil-river salinity increases. This study characterizes the river salinity response to discharge using statistical-dynamic methods. An exploratory analysis of river salinity, using early 1900s water quality surveys in the western United States, shows much river salinity variability is in response to storm and annual discharge. Presumably this is because river discharge is largely supported by surface flow.
Resumo:
植物与昆虫的互作关系是个长期进化的过程,虫害给农业生产带来巨大损失。本研究以甘蓝型油菜(Brassica napus)为例,研究了不同环境条件和遗传背景下外源基因的表达与效用,同时利用蛋白质组技术,研究了虫害损伤模拟条件下植物可能存在的内源抗性机制。甘蓝型油菜中转入了人工合成的Bt(Bacillus thuringiensis)杀虫基因,能使植物产生抗虫蛋白抵御虫害。我们在湖北湖南两个实验点进行了大田实验,按植株生长发育的4个不同时期从转基因植株的叶片上采样,研究抗虫蛋白在植物体内的表达动态。植株顶部第三片展开叶的Bt毒蛋白浓度在结荚期前随植物生长而不断增加,而在结荚期出现或增或减的现象。采样叶片的可溶性总蛋白浓度含量一直呈增加的趋势,直到结荚以后出现含量的明显降低。同时,收集了转基因油菜与湘油15号在田间自然杂交形成的杂交后代种子用于栽培,用GFP仪检测杂交后代的绿色荧光蛋白(green fluorescent protein),并用聚合酶链式反应(polymerase chain reaction, PCR)检测并确认带有转基因的杂交植株。为了检测带有转基因的杂交后代油菜中Bt毒蛋白的杀虫效率,用对Bt毒蛋白敏感的试虫品系——初孵棉铃虫幼虫(Helicoverpa armigera)进行杀虫活性检测实验。结果表明,携带Bt基因的杂交湘油及其转基因亲本对试虫的体重增长量均产生了负面影响,可以推断在调查取样的植株生长发育阶段,转基因杂交后代与其转基因亲本植株的杀虫效率没有显著差异。转基因植物及其杂交后代中抗虫蛋白的持续表达及田间带有转基因的自播植物的出现会使害虫产生耐受抗性的潜在可能性增加。 相对于人为增加的抗虫基因,植物在长期对抗昆虫的过程中也进化形成了自我防御机制,能够产生特异的抗性蛋白来应对昆虫的取食。本研究用机械损伤模拟害虫取食,对比了油菜受到物理损伤前后可溶性总蛋白的含量变化并试图通过蛋白质组学技术来检测可能发生变化的蛋白质。Bradford定量测定发现,同一植株同一叶片损伤前后可溶性总蛋白含量差异显著,损伤后蛋白表达量显著增高。蛋白质组双向凝胶电泳及其差异分析显示,损伤前后有8个蛋白质点发生明显的上调或下调。选择其中2个差异蛋白点经过MALDI-TOF质谱鉴定,它们分别是Rubisco小亚基前体以及果糖-1,6-二磷酸醛缩酶和粪卟啉-3-氧化酶的混合物,这些蛋白质在其他植物的抗逆研究中也有报道,它们可能在油菜叶片应答机械损伤过程中对维持植物的生理功能也有重要作用。
Resumo:
以成熟果实中不同葡萄糖/果糖(G/F)类型的6个桃品种(G/F≈1品种:‘冈山白’、‘山一白桃’和‘燕红’;高G/F品种:‘张黄7号’、‘龙246’和‘临白7号’)为试材,采用高效液相色谱法测定果实发育期果实和叶片中可溶性糖含量,并在盛花后74 d或101 d测定了‘冈山白’、‘山一白桃’、‘张黄 7号’和‘龙 246’新梢韧皮部中可溶性糖的含量;测定了果实发育过程中‘山一白桃’和‘临白7号’果实中的可溶性糖和淀粉代谢相关酶的活性。研究成熟果实中不同G/F类型桃果实内G/F差异的部位和时期;分析桃果实内G/F差异的可溶性糖代谢调控机理。 成熟果实中不同G/F类型桃果实中均以蔗糖作为主要碳水化合物积累形式,花后43–85 d蔗糖含量很低,随后持续快速积累直至果实成熟;花后43–85 d山梨醇有升高趋势,在果实成熟前40 d左右迅速降低;葡萄糖和果糖含量在果实发育早期较高,之后逐渐降低;但两类不同G/F桃在整个果实发育过程中G/F值与果实成熟时相似。叶片中贮藏的可溶性糖主要是蔗糖和山梨醇,在果实整个发育期间,G/F≈1品种叶片中G/F约1-3,而高G/F品种叶片中G/F约为2-7。G/F≈1品种‘冈山白’和‘山一白桃’与高G/F品种‘张黄 7号’和‘龙 246’韧皮部中山梨醇占总可溶性糖47-63%,显著高于蔗糖、葡萄糖和果糖的含量,G/F为0.8-0.91,且两类不同G/F桃品种间G/F值不存在显著差异。 成熟果实中G/F≈1类型的‘山一白桃’和高G/F值类型的‘临白7号’整个果实发育过程中,葡萄糖、山梨醇和淀粉的含量在这两个品种间一般没有明显差异;‘山一白桃’果实中的果糖含量显著高于‘临白7号’果实中的果糖;果实最后迅速生长期,‘山一白桃’果实中的蔗糖明显高于‘临白7号’。‘山一白桃’和‘临白7号’果实中的NAD+依赖型山梨醇脱氢酶(NAD+-SDH)活性低,两者有相似的变化趋势,一般无显著差异。‘临白7号’果实中的NADP+依赖型山梨醇脱氢酶(NADP+-SDH)和山梨醇氧化酶(SOX)活性一直高于‘山一白桃’,两者NADP+-SDH和SOX的活性分别在花后93-123 d和花后43-93 d有显著差异。‘临白7号’果实中的果糖激酶(FK)活性一般高于‘山一白桃’。花后43-93 d,‘临白7号’果实中的磷酸蔗糖合成酶(SPS)和蔗糖合成酶(SS)活性一般显著‘山一白桃’。果实最后迅速生长期,蔗糖快速积累,葡萄糖、果糖、山梨醇和淀粉含量迅速降低,同时伴随有SPS和SS活性的迅速升高。在整个果实发育过程中,两个品种果实中的淀粉酶活性较高,其果实中的淀粉含量和淀粉酶活性都有明显的下降趋势。 研究结果表明,整个果实发育过程中桃果实中均存在G/F≈1和高G/F现象,光合产物在韧皮部的运输对桃果实的G/F没有显著的影响,果实中G/F的差异主要由于果实内糖代谢差异所导致。‘临白7号’果实中山梨醇向果糖方向的转化能力与‘山一白桃’一般没有显著差异,由于不同时期较高的NADP+-SDH和SOX活性,使得山梨醇向葡萄糖方向的转化能力明显高于‘山一白桃’,同时,‘临白7号’果实中的FK活性一般高于‘山一白桃’,因此导致‘临白7号’果实中G/F高于‘山一白桃’。
Resumo:
Following the commencement of construction works of a 250 MW hydropower plant at Dumbbell Island in the Upper Victoria Nile in September 2007, BEL requested NaFIRRI to conduct continuous monitoring of fish catches at two transects i.e. the immediate upstream transect of the project site (Kalange-Makwanzi) and the immediate downstream .transect (Buyala-Kikubamutwe). The routine monitoring surveys were designed to be conducted twice a week at each of the tWo transects. It was anticipated that major immediate impacts were to occur during construction, and these needed to be known by BEL as part of a mitigation strategy. For example, the construction of it cofferdam could be accompanied by rapid changes in water quality and quantity downstream of the construction. These changes in turn could affect the fish catch and would probably be missed by the quarterly monitoring already in place. Therefore, a major cbjective of the more regular and rapid monitoring was to discern immediate impacts of construction activities by focusing on selected water quality parameters (total suspended solids, water conductivity, temperature, dissolved oxygen and pH) and fish catch characteristics (total catch, catch rates and value of the catch)
Resumo:
Source of the Nile (SON) fish farm is located at Bugungu in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm have a collaborative arrangement with NaFIRRI, a lead agency in fisheries research and innovations, to undertake quarterly environment monitoring surveys at the farm. The agreed areas for monitoring are: selected physico-chemical parameters (i.e. temperature, dissolved oxygen, pH, conductivity, secchi depth); total suspended solids (TSS); nutrient status; BOD5) and biological parameters (i.e. algae, zooplankton, macro-benthos and fish). Water and biological samples as well as field measurements were taken at 3 sites: within the fish cage rows (WIC/experimental), upstream (USC/control) and downstream (DSC) of the fish cages. The key research question was: Does fish cage operations have impacts on the water quality and aquatic biota in and around the SON cage fish farm? The environment monitoring surveys were projected to cover a full calendar year (i.e. from January to December). The first surveys were undertaken in 2011 and have continued on an annual basis since then. The present report presents field observations made for the fourth quarter survey undertaken in November 2014 and provides a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and the different aquatic biota in and around the fish cage site.
Resumo:
The impacts of shrimp farming on water quality and effluent loading of shrimp farms in southwest (Khulna) and southeast (Cox's Bazar) regions of Bangladesh was investigated during March-August and August-October season, respectively. Water salinity fluctuated from 3.0 to 15.0 ppt in the southwest, whereas it was between 2.5 to 20.0 ppt. in southeast region. Total ammonia nitrogen as recorded in most farms of Cox's Bazar region was higher (0. 1160.438 mg/L) than the recommended level of shrimp farming. Mean values of total ammonia nitrogen and total nitrogen at the outlet of shrimp farms were higher than those of inlet in both regions. Mean values of phosphate phosphorus and total phosphorus at outlet were lower than inlet except in harvest time of Penaeus monodon. Total suspended solids were deposited on the bottom of shrimp farms in both regions, which resulted in higher concentration in inlets than outlets in both regions.
Resumo:
Fresh mackerel (Rastrelliger kanagurta), catfish (Tachisurus dussumeri) and sole (Cynoglossus dubis) were gutted, cleaned, washed, brined, and smoked. Though it contributes to the quality of the smoked products, salt does not appear to prevent bacterial growth or spoilage at low concentration. In heavily salted products, salt is found to have a definite preservative action. Smoking lasted roughly 5 hrs for mackerel and 4 hrs for sole. Increasing the smoking time gave the product an unpleasant taste. Fish were then sun-dried to 20% moisture. The fish had been prepared in three groups, (1) turmeric-treated, (2) propionate-treated and control. Turmeric treated samples had a very attractive appearance, especially sole. The course of spoilage, as measured by following changes in total volatile nitrogen content, is tabulated. All controls were spoiled within 3 months; the others remained in good condition for 6 months. Turmeric is considered to be an ideal preservative.
Resumo:
One of the most important marine ecological phenomena is red tide which is created by increasing of phytoplankton population, influenced by different factors such as climate condition changes, utrification hydrological factors and can leave sever and undesired ecological and economical effects behind itself in the case of durability. Coast line of Hormozgan is about 900km from east to west, within the range of geographical coordinates of 56 16 23.8, 26 58 8.8 to 54 34 5.33 and 26 34 32 eastern longitude and northern latitude, seven sampling stations were considered and sampled for a period of one year from October 2008 to October 2009. after the analysis of Satellite images, monthly, during the best time. In several stages, samplings were performed. In each station, three samples were collected for identification and determination of Bloom- creating species abundance. Cochlodinium polykrikoides was the species responsible for the discoloration which occurred at October 2008 in Hormozgan marine water. Environmental parameters such as sea surface temperature, pH, salinity, Dissolved Oxygen concentration, Total Dissolved Solids (T.D.S.), conductivity, nitrate, nitrite and phosphate and also chlorophyll a were measured and calculated. Kruscal Wallis test was used to compare the densities between different months, seasons and the studied stations. Mann-whitney test from Nonparametric Tests was used for couple comparison. Pearson correlation coefficient was used to determine the relationship between physical and chemical data set and the abundance of Cochlodinium polykrikoides. Multivariate Regression and analysis of variance (ANOVA) also were used to obtain the models and equations of red tide occurrence relationship, environmental parameters and nutrient data. The highest density was 26 million cells per liter in Qeshm station. A meaningful difference was observed between sampling months and seasons but there was no between sampling stations which indicates that in favorable conditions, the occurrence of this phenomenon by the studied species is probable. Regarding to β coefficients of nitrate, temperature, phosphate, Total Dissolvable Solutions (T.D.S) and pH these parameters are effective on the abundance of this species and red tide occurrence. Increase in these factors can represent the effects and outcomes of human activities and increase in marine pollution.