979 resultados para time-resolved fast spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disordered Sr2FeMoO6 shows a drastic reduction in saturation magnetization compared to highly ordered samples, moreover magnetization as a function of the temperature for different disordered samples shows qualitatively different behaviours. We investigate the origin of such diversity by performing spatially resolved photoemission spectroscopy on various disordered samples. Our results establish that extensive electronic inhomogeneity, arising most probably from an underlying chemical inhomogeneity in disordered samples, is responsible for the observed magnetic inhomogeneity. It is further pointed out that these inhomogeneities are connected with composition fluctuations of the type Sr2Fe1+xMo1-xO6 with Fe-rich (x > 0) and Mo-rich (x < 0) regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Third-order nonlinear absorption and refraction coefficients of a few-layer boron carbon nitride (BCN) and reduced graphene oxide (RGO) suspensions have been measured at 3.2 eV in the femtosecond regime. Optical limiting behavior is exhibited by BCN as compared to saturable absorption in RGO. Nondegenerate time-resolved differential transmissions from BCN and RGO show different relaxation times. These differences in the optical nonlinearity and carrier dynamics are discussed in the light of semiconducting electronic band structure of BCN vis-a-vis the Dirac linear band structure of graphene. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report femtosecond time-resolved reflectivity measurements of coherent phonons in tellurium performed over a wide range of temperatures (3-296 K) and pump-laser intensities. A totally symmetric A(1) coherent phonon at 3.6 THz responsible for the oscillations in the reflectivity data is observed to be strongly positively chirped (i.e., phonon time period decreases at longer pump-probe delay times) with increasing photoexcited carrier density, more so at lower temperatures. We show that the temperature dependence of the coherent phonon frequency is anomalous (i.e, increasing with increasing temperature) at high photoexcited carrier density due to electron-phonon interaction. At the highest photoexcited carrier density of (1.4 x 10(21) cm(-3) and the sample temperature of 3 K, the lattice displacement of the coherent phonon mode is estimated to be as high as similar to 0.24 angstrom. Numerical simulations based on coupled effects of optical absorption and carrier diffusion reveal that the diffusion of carriers dominates the nonoscillatory electronic part of the time-resolved reflectivity. Finally, using the pump-probe experiments at low carrier density of 6 x 10(18) cm(-3), we separate the phonon anharmonicity to obtain the electron-phonon coupling contribution to the phonon frequency and linewidth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nature of magnetization reversal in an isolated cylindrical nanomagnet has been studied employing time-resolved magnetoresistance measurement. We find that the reversal mode is highly stochastic, occurring either by multimode or single-step switching. Intriguingly, the stochasticity was found to depend on the alignment of the driving magnetic field to the long axis of the nanowires, where predominantly multimode switching gives way to single-step switching behavior as the field direction is rotated from parallel to transverse with respect to the nanowire axis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel ‘picket-fence’ porphyrin, 5,10,15,20-tetrakis[o-(tetrahydro-2-thenoylamino)phenyl]porphyrin (H2L) with ligating tetrahydrothiophene rings disposed perpendicular to the porphyrin plane has been synthesised. Its zinc(II) derivative, [ZnL], binds two silver(I) ions co-operatively with a dissociation constant of 4.8 × 10–8 dm3 mol–1. Time-resolved fluorescence lifetime measurements reveal the presence of intramolecular photoexcited electron transfer in this donor–acceptor system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Degenerate pump-probe reflectivity experiments have been performed on a single crystal of bismuth telluride (Bi2Te3) as a function of sample temperature (3 K to 296 K) and pump intensity using similar to 50 femtosecond laser pulses with central photon energy of 1.57 eV. The time-resolved reflectivity data show two coherently generated totally symmetric A(1g) modes at 1.85 THz and 3.6 THz at 296 K which blue-shift to 1.9 THz and 4.02 THz, respectively, at 3 K. At high photoexcited carrier density of similar to 1.7 x 10(21) cm(-3), the phonon mode at 4.02 THz is two orders of magnitude higher positively chirped (i.e the phonon time period decreases with increasing delay time between the pump and the probe pulses) than the lower-frequency mode at 1.9 THz. The chirp parameter, beta is shown to be inversely varying with temperature. The time evolution of these modes is studied using continuous-wavelet transform of the time-resolved reflectivity data. Copyright (C) EPLA, 2010

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steady-state fluorescence, lifetime measurements and time-resolved absorption spectra of the covalently linked hetero dimers consisting of pheophorbide and porphyrin revealed rapid (1011–1012s−1) and efficient singlet—singlet excitation energy transfer from porphyrin unit to pheophorbide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose and develop here a phenomenological Ginzburg-Landau-like theory of cuprate high-temperature superconductivity. The free energy of a cuprate superconductor is expressed as a functional F of the complex spin-singlet pair amplitude psi(ij) equivalent to psi(m) = Delta(m) exp(i phi(m)), where i and j are nearest-neighbor sites of the square planar Cu lattice in which the superconductivity is believed to primarily reside, and m labels the site located at the center of the bond between i and j. The system is modeled as a weakly coupled stack of such planes. We hypothesize a simple form FDelta, phi] = Sigma(m)A Delta(2)(m) + (B/2)Delta(4)(m)] + C Sigma(< mn >) Delta(m) Delta(n) cos(phi(m) - phi(n)) for the functional, where m and n are nearest-neighbor sites on the bond-center lattice. This form is analogous to the original continuum Ginzburg-Landau free-energy functional; the coefficients A, B, and C are determined from comparison with experiments. A combination of analytic approximations, numerical minimization, and Monte Carlo simulations is used to work out a number of consequences of the proposed functional for specific choices of A, B, and C as functions of hole density x and temperature T. There can be a rapid crossover of from small to large values as A changes sign from positive to negative on lowering T; this crossover temperature T-ms(x) is identified with the observed pseudogap temperature T*(x). The thermodynamic superconducting phase-coherence transition occurs at a lower temperature T-c(x), and describes superconductivity with d-wave symmetry for positive C. The calculated T-c(x) curve has the observed parabolic shape. The results for the superfluid density rho(s)(x, T), the local gap magnitude , the specific heat C-v(x, T) (with and without a magnetic field), as well as vortex properties, all obtained using the proposed functional, are compared successfully with experiments. We also obtain the electron spectral density as influenced by the coupling between the electrons and the correlation function of the pair amplitude calculated from the functional, and compare the results successfully with the electronic spectrum measured through angle resolved photoemission spectroscopy (ARPES). For the specific heat, vortex structure, and electron spectral density, only some of the final results are reported here; the details are presented in subsequent papers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

meso-Tetraphenylporphyrin and its metal [zinc(II) and copper(II)] derivatives form both inter and intramolecular complexes with 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB). The nature of interaction is predominantly charge transfer (CT) in origin, with the porphyrin functioning as a II-donor and DTNB as an acceptor. Among the covalently linked intramolecular systems, the magnitude of CT interaction varies with the position (of one of the aryl groups of the porphyrin) to which DTNB is attached as ortho meta > para. Steady-state and time-resolved fluorescence studies revealed electron transfer to be the dominant pathway for the fluorescence quenching in these systems. Steady-state photolysis experiments probed using EPR and optical absorption studies have shown that electron transfer (from the excited singlet state of the porphyrin) to DTNB results in the formation of thiyl radical and production of free thiolate anion. It is found that the products of electrochemical reduction of covalently linked porphyrin-DTNB systems are different from those observed for the photochemical studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the generation of coherent optical phonons in spin-frustrated pyrochlore single crystals Dy2Ti2O7, Gd2Ti2O7, and Tb2Ti2O7 using femtosecond laser pulses (65 fs, 1.57 eV) in degenerate time-resolved transmission experiments as a function of temperature from 4 to 296 K. At 4 K, two coherent phonons are observed at similar to 5.3 THz (5.0 THz) and similar to 9.3 THz (9.4 THz) for Dy2Ti2O7 (Gd2Ti2O7), whereas three coherent phonons are generated at similar to 5.0, 8.6, and 9.7 THz for Tb2Ti2O7. In the case of spin-ice Dy2Ti2O7, a clear discontinuity is observed in the linewidths of both the coherent phonons as well as in the phase of lower-energy coherent phonon mode, indicating a subtle structural change at 110 K. Another important observation is a phase difference of pi between the modes in all the samples, thus suggesting that the driving forces behind the generation of these modes could be different in nature, unlike a purely impulsive or displacive mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel fluoroarylporphyrins bearing electron donor dimethylamino groups in the meso-aryl positions and an electron acceptor nitro group on one of the pyrrole carbons exhibit significant solvent dependent fluorescence spectra and time-resolved emission properties. These effects are suggestive of intramolecular charge transfer (ICT) in the singlet excited state of these porphyrins. Electrochemical redox behaviour of these porphyrins showed the presence of substantial donor-acceptor interactions in the nitro-amino porphyrins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A few fixed distance covalently linked porphyrin-quinone molecules have been synthesized in which a benzoquinone is directly attached to a meso/beta-pyrrole position of tri(phenyl/pentafluorophenyl)/tetraphenylporphyrins. The choice of fluoroarylporphyrins permit modulation of Delta G(ET) values for photoinduced electron-transfer reactions in these systems. All short distance porphyrin-quinone molecules showed efficient quenching of the porphyrin singlet excited state. The electrochemical redox data coupled with the steady-state and time-resolved singlet emission data are analysed to evaluate the dependence of Delta G(ET) values on the rate of electron transfer (k(ET)) in these systems. The meso-trifluoroarylporphyrin-quinones are found to be sensitive probes of the surrounding dielectric environment. Varying solvent polarity on the mechanism of fluorescence quenching and k(ET) values revealed that short donor-acceptor distance and the solvent dielectric relaxation properties play a dominant role. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled monolayers (SAMs) of alkanethiols on gold surfaces show great promise in controlling the nucleation and growth of inorganic minerals from solution. In doing so, they mimic the role of some biogenic macromolecules in natural biomineralisation processes. Crystallization on SAM surfaces is usually monitored ex-situ; by allowing the process to commence and to evolve for some time, removing the substrate from the mother solution, and then examining it using microscopy, diffraction etc. We present here for the first time, the use of high energy monochromatic synchrotron X-radiation in conjunction with a two dimensional detector to monitor in situ, in a time resolved fashion, the growth of SrCO3 (strontianite) crystals on a SAM substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rotational dynamics of polarity sensitive fluorescent dyes (ANS and DPH) in a nonpolymertic aqueous gel derived from tripodal cholamide I was studied using ultrafast time-resolved fluorescence technique. Results were compared with that of naturally occurring di- and trihydroxy bile salts. ANS in the gel showed two rotational correlation time (phi) components, 13.2 ns (bound to the hydrophobic region of the gel) and 1.0 ns (free aqueous ANS), whereas DPH showed only one component (4.8 ns). In the sol state, faster rotational motion was observed, both for ANS and DPH. Our data revealed that dyes get encapsulated more tightly in the gel network when compared to the micellar aggregates. ANS has more restrained rotation compared to DPH. This was attributed to the interaction of the sulfonate group of ANS with water molecules and hydrophilic parts of the gelator molecule. No restricted rotation was observed for DPH in the gel state unlike when it is in the gel phase of lipid bilayer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electronic properties of graphene have been studied more extensively than its photonic applications, in spite of its exciting optical properties. Recent results on solar cells, light emitting diodes and photodetectors show its true potential in photonics and optoelectronics. Here, we have explored the use of reduced graphene oxide as a candidate for solution processed ultraviolet photodetectors. UV detection is demonstrated by reduced graphene oxide in terms of time resolved photocurrent as well as photoresponse. The responsivity of the detectors is found to be 0.12 A/W with an external quantum efficiency of 40%. (C) 2011 American Institute of Physics. [doi:10.1063/1.3640222]