952 resultados para three-phase unbalanced systems
Resumo:
Nell’ambito della presente tesi verrà descritto un approccio generalizzato per il controllo delle macchine elettriche trifasi; la prima parte è incentrata nello sviluppo di una metodologia di modellizzazione generale, ossia in grado di descrivere, da un punto di vista matematico, il comportamento di una generica macchina elettrica, che possa quindi includere in sé stessa tutte le caratteristiche salienti che possano caratterizzare ogni specifica tipologia di macchina elettrica. Il passo successivo è quello di realizzare un algoritmo di controllo per macchine elettriche che si poggi sulla teoria generalizzata e che utilizzi per il proprio funzionamento quelle grandezze offerte dal modello unico delle macchine elettriche. La tipologia di controllo che è stata utilizzata è quella che comunemente viene definita come controllo ad orientamento di campo (FOC), per la quale sono stati individuati degli accorgimenti atti a migliorarne le prestazioni dinamiche e di controllo della coppia erogata. Per concludere verrà presentata una serie di prove sperimentali con lo scopo di mettere in risalto alcuni aspetti cruciali nel controllo delle macchine elettriche mediante un algoritmo ad orientamento di campo e soprattutto di verificare l’attendibilità dell’approccio generalizzato alle macchine elettriche trifasi. I risultati sperimentali confermano quindi l’applicabilità del metodo a diverse tipologie di macchine (asincrone e sincrone) e sono stati verificate nelle condizioni operative più critiche: bassa velocità, alta velocità bassi carichi, dinamica lenta e dinamica veloce.
Resumo:
DcuS is a membrane-integral sensory histidine kinase involved in the DcuSR two-component regulatory system in Escherichia coli by regulating the gene expression of C4-dicarboxylate metabolism in response to external stimuli. How DcuS mediates the signal transduction across the membrane remains little understood. This study focused on the oligomerization and protein-protein interactions of DcuS by using quantitative Fluorescence Resonance Energy Transfer (FRET) spectroscopy. A quantitative FRET analysis for fluorescence spectroscopy has been developed in this study, consisting of three steps: (1) flexible background subtraction to yield background-free spectra, (2) a FRET quantification method to determine FRET efficiency (E) and donor fraction (fD = [donor] / ([donor]+[acceptor])) from the spectra, and (3) a model to determine the degree of oligomerization (interaction stoichiometry) in the protein complexes based on E vs. fD. The accuracy and applicability of this analysis was validated by theoretical simulations and experimental systems. These three steps were integrated into a computer procedure as an automatic quantitative FRET analysis which is easy, fast, and allows high-throughout to quantify FRET accurately and robustly, even in living cells. This method was subsequently applied to investigate oligomerization and protein-protein interactions, in particular in living cells. Cyan (CFP) and yellow fluorescent protein (YFP), two spectral variants of green fluorescent protein, were used as a donor-acceptor pair for in vivo measurements. Based on CFP- and YFP-fusions of non-interacting membrane proteins in the cell membrane, a minor FRET signal (E = 0.06 ± 0.01) can be regarded as an estimate of direct interaction between CFP and YFP moieties of fusion proteins co-localized in the cell membrane (false-positive). To confirm if the FRET occurrence is specific to the interaction of the investigated proteins, their FRET efficiency should be clearly above E = 0.06. The oligomeric state of DcuS was examined both in vivo (CFP/YFP) and in vitro (two different donor-acceptor pairs of organic dyes) by three independent experimental systems. The consistent occurrence of FRET in vitro and in vivo provides the evidence for the homo-dimerization of DcuS as full-length protein for the first time. Moreover, novel interactions (hetero-complexes) between DcuS and its functionally related proteins, citrate-specific sensor kinase CitA and aerobic dicarboxylate transporter DctA respectively, have been identified for the first time by intermolecular FRET in vivo. This analysis can be widely applied as a robust method to determine the interaction stoichiometry of protein complexes for other proteins of interest labeled with adequate fluorophores in vitro or in vivo.
Resumo:
The work presented in this thesis deals with complex materials, which were obtained by self-assembly of monodisperse colloidal particles, also called colloidal crystallization. Two main fields of interest were investigated, the first dealing with the fabrication of colloidal monolayers and nanostructures, which derive there from. The second turned the focus on the phononic properties of colloidal particles, crystals, and glasses. For the fabrication of colloidal monolayers a method is introduced, which is based on the sparse distribution of dry colloidal particles on a parent substrate. In the ensuing floating step the colloidal monolayer assembles readily at the three-phase-contact line, giving a 2D hexagonally ordered film under the right conditions. The unique feature of this fabrication process is an anisotropic shrinkage, which occurs alongside with the floating step. This phenomenon is exploited for the tailored structuring of colloidal monolayers, leading to designed hetero-monolayers by inkjet printing. Furthermore, the mechanical stability of the floating monolayers allows the deposition on hydrophobic substrates, which enables the fabrication of ultraflat nanostructured surfaces. Densely packed arrays of crescent shaped nanoparticles have also been synthesized. It is possible to stack those arrays in a 3D manner allowing to mutually orientate the individual layers. In a step towards 3D mesoporous materials a methodology to synthesize hierarchically structured inverse opals is introduced. The deposition of colloidal particles in the free voids of a host inverse opal allows for the fabrication of composite inverse opals on two length scales. The phononic properties of colloidal crystals and films are characterized by Brillouin light scattering (BLS). At first the resonant modes of colloidal particles consisting of polystyrene, a copolymer of methylmethacrylate and butylacrylate, or of a silica core-PMMA shell topography are investigated, giving insight into their individual mechanical properties. The infiltration of colloidal films with an index matching liquid allows measuring the phonon dispersion relation. This leads to the assignment of band gaps to the material under investigation. Here, two band gaps could be found, one originating from the fcc order in the colloidal crystal (Bragg gap), the other stemming from the vibrational eigenmodes of the colloidal particles (hybridization gap).
Resumo:
Analysis of the peak-to-peak output current ripple amplitude for multiphase and multilevel inverters is presented in this PhD thesis. The current ripple is calculated on the basis of the alternating voltage component, and peak-to-peak value is defined by the current slopes and application times of the voltage levels in a switching period. Detailed analytical expressions of peak-to-peak current ripple distribution over a fundamental period are given as function of the modulation index. For all the cases, reference is made to centered and symmetrical switching patterns, generated either by carrier-based or space vector PWM. Starting from the definition and the analysis of the output current ripple in three-phase two-level inverters, the theoretical developments have been extended to the case of multiphase inverters, with emphasis on the five- and seven-phase inverters. The instantaneous current ripple is introduced for a generic balanced multiphase loads consisting of series RL impedance and ac back emf (RLE). Simplified and effective expressions to account for the maximum of the output current ripple have been defined. The peak-to-peak current ripple diagrams are presented and discussed. The analysis of the output current ripple has been extended also to multilevel inverters, specifically three-phase three-level inverters. Also in this case, the current ripple analysis is carried out for a balanced three-phase system consisting of series RL impedance and ac back emf (RLE), representing both motor loads and grid-connected applications. The peak-to-peak current ripple diagrams are presented and discussed. In addition, simulation and experimental results are carried out to prove the validity of the analytical developments in all the cases. The cases with different phase numbers and with different number of levels are compared among them, and some useful conclusions have been pointed out. Furthermore, some application examples are given.
Resumo:
In a world focused on the need to produce energy for a growing population, while reducing atmospheric emissions of carbon dioxide, organic Rankine cycles represent a solution to fulfil this goal. This study focuses on the design and optimization of axial-flow turbines for organic Rankine cycles. From the turbine designer point of view, most of this fluids exhibit some peculiar characteristics, such as small enthalpy drop, low speed of sound, large expansion ratio. A computational model for the prediction of axial-flow turbine performance is developed and validated against experimental data. The model allows to calculate turbine performance within a range of accuracy of ±3%. The design procedure is coupled with an optimization process, performed using a genetic algorithm where the turbine total-to-static efficiency represents the objective function. The computational model is integrated in a wider analysis of thermodynamic cycle units, by providing the turbine optimal design. First, the calculation routine is applied in the context of the Draugen offshore platform, where three heat recovery systems are compared. The turbine performance is investigated for three competing bottoming cycles: organic Rankine cycle (operating cyclopentane), steam Rankine cycle and air bottoming cycle. Findings indicate the air turbine as the most efficient solution (total-to-static efficiency = 0.89), while the cyclopentane turbine results as the most flexible and compact technology (2.45 ton/MW and 0.63 m3/MW). Furthermore, the study shows that, for organic and steam Rankine cycles, the optimal design configurations for the expanders do not coincide with those of the thermodynamic cycles. This suggests the possibility to obtain a more accurate analysis by including the computational model in the simulations of the thermodynamic cycles. Afterwards, the performance analysis is carried out by comparing three organic fluids: cyclopentane, MDM and R245fa. Results suggest MDM as the most effective fluid from the turbine performance viewpoint (total-to-total efficiency = 0.89). On the other hand, cyclopentane guarantees a greater net power output of the organic Rankine cycle (P = 5.35 MW), while R245fa represents the most compact solution (1.63 ton/MW and 0.20 m3/MW). Finally, the influence of the composition of an isopentane/isobutane mixture on both the thermodynamic cycle performance and the expander isentropic efficiency is investigated. Findings show how the mixture composition affects the turbine efficiency and so the cycle performance. Moreover, the analysis demonstrates that the use of binary mixtures leads to an enhancement of the thermodynamic cycle performance.
Resumo:
The present thesis focuses on the problem of robust output regulation for minimum phase nonlinear systems by means of identification techniques. Given a controlled plant and an exosystem (an autonomous system that generates eventual references or disturbances), the control goal is to design a proper regulator able to process the only measure available, i.e the error/output variable, in order to make it asymptotically vanishing. In this context, such a regulator can be designed following the well known “internal model principle” that states how it is possible to achieve the regulation objective by embedding a replica of the exosystem model in the controller structure. The main problem shows up when the exosystem model is affected by parametric or structural uncertainties, in this case, it is not possible to reproduce the exact behavior of the exogenous system in the regulator and then, it is not possible to achieve the control goal. In this work, the idea is to find a solution to the problem trying to develop a general framework in which coexist both a standard regulator and an estimator able to guarantee (when possible) the best estimate of all uncertainties present in the exosystem in order to give “robustness” to the overall control loop.
Resumo:
A simple dependency between contact angle θ and velocity or surface tension has been predicted for the wetting and dewetting behavior of simple liquids. According to the hydrodynamic theory, this dependency was described by Cox and Voinov as θ ∼ Ca^(1/3) (Ca: Capillary number). For more complex liquids like surfactant solutions, this prediction is not directly given.rnHere I present a rotating drum setup for studying wetting/dewetting processes of surfactant solutions on the basis of velocity-dependent contact angle measurements. With this new setup I showed that surfactant solutions do not follow the predicted Cox-Voinov relation, but showed a stronger contact angle dependency on surface tension. All surfactants independent of their charge showed this difference from the prediction so that electrostatic interactions as a reason could be excluded. Instead, I propose the formation of a surface tension gradient close to the three-phase contact line as the main reason for the strong contact angle decrease with increasing surfactant concentration. Surface tension gradients are not only formed locally close to the three-phase contact line, but also globally along the air-liquid interface due to the continuous creation/destruction of the interface by the drum moving out of/into the liquid. By systematically hindering the equilibration routes of the global gradient along the interface and/or through the bulk, I was able to show that the setup geometry is also important for the wetting/dewetting of surfactant solutions. Further, surface properties like roughness or chemical homogeneity of the wetted/dewetted substrate influence the wetting/dewetting behavior of the liquid, i. e. the three-phase contact line is differently pinned on rough/smooth or homogeneous/inhomogeneous surfaces. Altogether I showed that the wetting/dewetting of surfactant solutions did not depend on the surfactant type (anionic, cationic, or non-ionic) but on the surfactant concentration and strength, the setup geometry, and the surface properties.rnSurfactants do not only influence the wetting/dewetting behavior of liquids, but also the impact behavior of drops on free-standing films or solutions. In a further part of this work, I dealt with the stability of the air cushion between drop and film/solution. To allow coalescence between drop and substrate, the air cushion has to vanish. In the presence of surfactants, the vanishing of the air is slowed down due to a change in the boundary condition from slip to no-slip, i. e. coalescence is suppressed or slowed down in the presence of surfactant.
Resumo:
Binding of hydrophobic chemicals to colloids such as proteins or lipids is difficult to measure using classical microdialysis methods due to low aqueous concentrations, adsorption to dialysis membranes and test vessels, and slow kinetics of equilibration. Here, we employed a three-phase partitioning system where silicone (polydimethylsiloxane, PDMS) serves as a third phase to determine partitioning between water and colloids and acts at the same time as a dosing device for hydrophobic chemicals. The applicability of this method was demonstrated with bovine serum albumin (BSA). Measured binding constants (K(BSAw)) for chlorpyrifos, methoxychlor, nonylphenol, and pyrene were in good agreement with an established quantitative structure-activity relationship (QSAR). A fifth compound, fluoxypyr-methyl-heptyl ester, was excluded from the analysis because of apparent abiotic degradation. The PDMS depletion method was then used to determine partition coefficients for test chemicals in rainbow trout (Oncorhynchus mykiss) liver S9 fractions (K(S9w)) and blood plasma (K(bloodw)). Measured K(S9w) and K(bloodw) values were consistent with predictions obtained using a mass-balance model that employs the octanol-water partition coefficient (K(ow)) as a surrogate for lipid partitioning and K(BSAw) to represent protein binding. For each compound, K(bloodw) was substantially greater than K(S9w), primarily because blood contains more lipid than liver S9 fractions (1.84% of wet weight vs 0.051%). Measured liver S9 and blood plasma binding parameters were subsequently implemented in an in vitro to in vivo extrapolation model to link the in vitro liver S9 metabolic degradation assay to in vivo metabolism in fish. Apparent volumes of distribution (V(d)) calculated from the experimental data were similar to literature estimates. However, the calculated binding ratios (f(u)) used to relate in vitro metabolic clearance to clearance by the intact liver were 10 to 100 times lower than values used in previous modeling efforts. Bioconcentration factors (BCF) predicted using the experimental binding data were substantially higher than the predicted values obtained in earlier studies and correlated poorly with measured BCF values in fish. One possible explanation for this finding is that chemicals bound to proteins can desorb rapidly and thus contribute to metabolic turnover of the chemicals. This hypothesis remains to be investigated in future studies, ideally with chemicals of higher hydrophobicity.
Resumo:
CLINICAL/METHODICAL ISSUE: Skeletal infections are often a diagnostic and clinical challenge. STANDARD RADIOLOGICAL METHODS: Nuclear imaging modalities used in the diagnostic workup of acute and chronic skeletal infections include three-phase bone scintigraphy and scintigraphy with labelled leucocytes. METHODICAL INNOVATIONS: The introduction of hybrid technologies, such as single photon emission computed tomography/computed tomography (SPECT/CT) has dramatically changed nuclear medical imaging of infections. PERFORMANCE: In general SPECT/CT leads to a considerably more accurate diagnosis than planar or SPECT imaging. ACHIEVEMENTS: Given the integrated acquisition of metabolic, functional and morphological information, SPECT/CT has increased in particular the specificity of three-phase skeletal scanning and scintigraphy with labeled leucocytes.
Resumo:
STUDY DESIGN: Open label study to determine drug dose for a randomized double-blind placebo-controlled parallel study. OBJECTIVES: To assess the efficacy and side effects of oral Delta(9)-tetrahydrocannabinol (THC) and rectal THC-hemisuccinate (THC-HS) in SCI patients. SETTING: REHAB Basel, Switzerland. METHOD: Twenty-five patients with SCI were included in this three-phase study with individual dose adjustment, each consisting of 6 weeks. Twenty-two participants received oral THC open label starting with a single dose of 10 mg (Phase 1, completed by 15 patients). Eight subjects received rectal THC-HS (Phase 2, completed by seven patients). In Phase 3, six patients were treated with oral THC and seven with placebo. Major outcome parameters were the spasticity sum score (SSS) using the Modified Ashworth Scale (MAS) and self-ratings of spasticity. RESULTS: Mean daily doses were 31 mg with THC and 43 mg with THC-HS. Mean SSS for THC decreased significantly from 16.72 (+/-7.60) at baseline to 8.92 (+/-7.14) on day 43. Similar improvement was seen with THC-HS. We observed a significant improvement of SSS with active drug (P=0.001) in the seven subjects who received oral THC in Phase 1 and placebo in Phase 3. Major reasons for drop out were increase of pain and psychological side effects. CONCLUSION: THC is an effective and safe drug in the treatment of spasticity. At least 15-20 mg per day were needed to achieve a therapeutic effect.
Resumo:
The pharmacokinetic interaction between atovaquone, a 1,4-hydroxynaphthoquinone, and zidovudine was examined in an open, randomized, three-phase crossover study in 14 patients infected with human immunodeficiency virus. Atovaquone (750 mg every 12 hours) and zidovudine (200 mg every 8 hours) were given orally alone and in combination. Atovaquone significantly increased the area under the zidovudine concentration-time curve (AUC) (1.82 +/- 0.62 micrograms.hr/ml versus 2.39 +/- 0.68 micrograms.hr/ml; p < 0.05) and decreased the oral clearance of zidovudine (2029 +/- 666 ml/min versus 1512 +/- 464 ml/min; p < 0.05). In contrast, atovaquone tended to decrease the AUC of zidovudine-glucuronide (7.31 +/- 1.51 micrograms.hr/ml versus 6.89 +/- 1.42 micrograms.hr/ml; p < 0.1) and significantly decreased the ratio of AUC zidovudine-glucuronide/AUC zidovudine (4.48 +/- 1.94 versus 3.12 +/- 1.1; p < 0.05). The maximum concentration of zidovudine-glucuronide was significantly lowered by atovaquone (5.7 +/- 1.5 versus 4.57 +/- 0.97 micrograms/ml; p < 0.05). Zidovudine had no effect on the pharmacokinetic disposition of atovaquone. Atovaquone appears to increase the AUC of zidovudine by inhibiting the glucuronidation of zidovudine.
Resumo:
Determination of an 'anaerobic threshold' plays an important role in the appreciation of an incremental cardiopulmonary exercise test and describes prominent changes of blood lactate accumulation with increasing workload. Two lactate thresholds are discerned during cardiopulmonary exercise testing and used for physical fitness estimation or training prescription. A multitude of different terms are, however, found in the literature describing the two thresholds. Furthermore, the term 'anaerobic threshold' is synonymously used for both, the 'first' and the 'second' lactate threshold, bearing a great potential of confusion. The aim of this review is therefore to order terms, present threshold concepts, and describe methods for lactate threshold determination using a three-phase model with reference to the historical and physiological background to facilitate the practical application of the term 'anaerobic threshold'.
Resumo:
Transformers are very important elements of any power system. Unfortunately, they are subjected to through-faults and abnormal operating conditions which can affect not only the transformer itself but also other equipment connected to the transformer. Thus, it is essential to provide sufficient protection for transformers as well as the best possible selectivity and sensitivity of the protection. Nowadays microprocessor-based relays are widely used to protect power equipment. Current differential and voltage protection strategies are used in transformer protection applications and provide fast and sensitive multi-level protection and monitoring. The elements responsible for detecting turn-to-turn and turn-to-ground faults are the negative-sequence percentage differential element and restricted earth-fault (REF) element, respectively. During severe internal faults current transformers can saturate and slow down the speed of relay operation which affects the degree of equipment damage. The scope of this work is to develop a modeling methodology to perform simulations and laboratory tests for internal faults such as turn-to-turn and turn-to-ground for two step-down power transformers with capacity ratings of 11.2 MVA and 290 MVA. The simulated current waveforms are injected to a microprocessor relay to check its sensitivity for these internal faults. Saturation of current transformers is also studied in this work. All simulations are performed with the Alternative Transients Program (ATP) utilizing the internal fault model for three-phase two-winding transformers. The tested microprocessor relay is the SEL-487E current differential and voltage protection relay. The results showed that the ATP internal fault model can be used for testing microprocessor relays for any percentage of turns involved in an internal fault. An interesting observation from the experiments was that the SEL-487E relay is more sensitive to turn-to-turn faults than advertized for the transformers studied. The sensitivity of the restricted earth-fault element was confirmed. CT saturation cases showed that low accuracy CTs can be saturated with a high percentage of turn-to-turn faults, where the CT burden will affect the extent of saturation. Recommendations for future work include more accurate simulation of internal faults, transformer energization inrush, and other scenarios involving core saturation, using the newest version of the internal fault model. The SEL-487E relay or other microprocessor relays should again be tested for performance. Also, application of a grounding bank to the delta-connected side of a transformer will increase the zone of protection and relay performance can be tested for internal ground faults on both sides of a transformer.
Resumo:
This doctoral thesis presents the computational work and synthesis with experiments for internal (tube and channel geometries) as well as external (flow of a pure vapor over a horizontal plate) condensing flows. The computational work obtains accurate numerical simulations of the full two dimensional governing equations for steady and unsteady condensing flows in gravity/0g environments. This doctoral work investigates flow features, flow regimes, attainability issues, stability issues, and responses to boundary fluctuations for condensing flows in different flow situations. This research finds new features of unsteady solutions of condensing flows; reveals interesting differences in gravity and shear driven situations; and discovers novel boundary condition sensitivities of shear driven internal condensing flows. Synthesis of computational and experimental results presented here for gravity driven in-tube flows lays framework for the future two-phase component analysis in any thermal system. It is shown for both gravity and shear driven internal condensing flows that steady governing equations have unique solutions for given inlet pressure, given inlet vapor mass flow rate, and fixed cooling method for condensing surface. But unsteady equations of shear driven internal condensing flows can yield different “quasi-steady” solutions based on different specifications of exit pressure (equivalently exit mass flow rate) concurrent to the inlet pressure specification. This thesis presents a novel categorization of internal condensing flows based on their sensitivity to concurrently applied boundary (inlet and exit) conditions. The computational investigations of an external shear driven flow of vapor condensing over a horizontal plate show limits of applicability of the analytical solution. Simulations for this external condensing flow discuss its stability issues and throw light on flow regime transitions because of ever-present bottom wall vibrations. It is identified that laminar to turbulent transition for these flows can get affected by ever present bottom wall vibrations. Detailed investigations of dynamic stability analysis of this shear driven external condensing flow result in the introduction of a new variable, which characterizes the ratio of strength of the underlying stabilizing attractor to that of destabilizing vibrations. Besides development of CFD tools and computational algorithms, direct application of research done for this thesis is in effective prediction and design of two-phase components in thermal systems used in different applications. Some of the important internal condensing flow results about sensitivities to boundary fluctuations are also expected to be applicable to flow boiling phenomenon. Novel flow sensitivities discovered through this research, if employed effectively after system level analysis, will result in the development of better control strategies in ground and space based two-phase thermal systems.
Resumo:
While nucleation of solids in supercooled liquids is ubiquitous [15, 65, 66], surface crystallization, the tendency for freezing to begin preferentially at the liquid-gas interface, has remained puzzling [74, 18, 68, 69, 51, 64, 72, 16]. Here we employ high-speed imaging of supercooled water drops to study the phenomenon of heterogeneous surface crystallization. Our geometry avoids the "point-like contact" of prior experiments by providing a simple, symmetric contact line (triple line defined by the substrate-liquid-air interface) for a drop resting on a homogeneous silicon substrate. We examine three possible mechanisms that might explain these laboratory observations: (i) Line Tension at the triple line, (ii) Thermal Gradients within the droplets and (iii) Surface Texture. In our first study we record nearly perfect spatial uniformity in the immersed (liquid-substrate) region and, thereby, no preference for nucleation at the triple line. In our second study, no influence of thermal gradients on the preference for freezing at the triple line was observed. Motivated by the conjectured importance of line tension (τ) [1, 66] for heterogeneous nucleation, we also searched for evidence of a transition to surface crystallization at length scales on the order of δ ∼ τ/σ, where σ is the surface tension [14]; poorly constrained τ [49] leads to δ ranging from microns to nanometers. We demonstrate that nano-scale texture causes a shift in the nucleation to the three-phase contact line, while micro-scale texture does not. The possibility of a critical length scale has implications for the effectiveness of nucleation catalysts, including formation of ice in atmospheric clouds [7].