962 resultados para thermionic specific detection
Resumo:
The work described in this thesis was conducted with the aim of: 1) investigating the binding capabilities of calix[4]arene-functionalized microcantilevers towards specific metal ions and 2) developing a new16-microcantilever array sensing system for the rapid, and simultaneous detection of metal ions in fresh water. Part I of this thesis reports on the use of three new bimodal calix[4]arenes (methoxy, ethoxy and crown) as potential host/guest sensing layers for detecting selected ions in dilute aqueous solutions using single microcantilever experimental system. In this work it was shown that modifying the upper rim of the calix[4]arenes with a thioacetate end group allow calix[4]arenes to self-assemble on Au(111) forming complete highly ordered monolayers. It was also found that incubating the microcantilevers coated with 5 nm of Inconel and 40 nm of Au for 1 h in a 1.0 M solution of calix[4]arene produced the highest sensitivity. Methoxy-functionalized microcantilevers showed a definite preference for Ca²⁺ ions over other cationic guests and were able to detect trace concentration as low as 10⁻¹² M in aqueous solutions. Microcantilevers modified with ethoxy calix[4]arene displayed their highest sensitivity towards Sr²⁺ and to a lesser extent Ca²⁺ ions. Crown calix[4]arene-modified microcantilevers were however found to bind selectively towards Cs⁺ ions. In addition, the counter anion was also found to contribute to the deflection. For example methoxy calix[4]arene-modified microcantilever was found to be more sensitive to CaCl₂ over other water-soluble calcium salts such as Ca(NO₃)₂ , CaBr₂ and CaI₂. These findings suggest that the response of calix[4]arene-modified microcantilevers should be attributed to the target ionic species as a whole instead of only considering the specific cation and/or anion. Part II presents the development of a 16-microcantilever sensor setup. The implementation of this system involved the creation of data analysis software that incorporates data from the motorized actuator and a two-axis photosensitive detector to obtain the deflection signal originating from each individual microcantilever in the array. The system was shown to be capable of simultaneous measurements of multiple microcantilevers with different coatings. A functionalization unit was also developed that allows four microcantilevers in the array to be coated with an individual sensing layer one at the time. Because of the variability of the spring constants of different cantilevers within the array, results presented were quoted in units of surface stress unit in order to compare values between the microcantilevers in the array.
Resumo:
Cryptococcus neoformans is an opportunistic fungal pathogen that causes significant disease worldwide. Even though this fungus has not evolved specifically to cause human disease, it has a remarkable ability to adapt to many different environments within its infected host. C. neoformans adapts by utilizing conserved eukaryotic and fungal-specific signaling pathways to sense and respond to stresses within the host. Upon infection, two of the most significant environmental changes this organism experiences are elevated temperature and high pH.
Conserved Rho and Ras family GTPases are central regulators of thermotolerance in C. neoformans. Many GTPases require prenylation to associate with cellular membranes and function properly. Using molecular genetic techniques, microscopy, and infection models, I demonstrated that the prenyltransferase, geranylgeranyl transferase I (GGTase I) is required for thermotolerance and pathogenesis. Using fluorescence microscopy, I found that only a subset of conserved GGTase I substrates requires this enzyme for membrane localization. Therefore, the C. neoformans GGTase I may recognize its substrate in a slightly different manner than other eukaryotic organisms.
The alkaline response transcription factor, Rim101, is a central regulator of stress-response genes important for adapting to the host environment. In particular, Rim101 regulates cell surface alterations involved in immune avoidance. In other fungi, Rim101 is activated by alkaline pH through a conserved signaling pathway, but this pathway had yet been characterized in C. neoformans. Using molecular genetic techniques, I identified and analyzed the conserved members of the Rim pathway. I found that it was only partially conserved in C. neoformans, missing the components that sense pH and initiate pathway activation. Using a genetic screen, I identified a novel Rim pathway component named Rra1. Structural prediction and genetic epistasis experiments suggest that Rra1 may serve as the Rim pathway pH sensor in C. neoformans and other related basidiomycete fungi.
To explore the relevance of Rim pathway signaling in the interaction of C neoformans with its host, I characterized the Rim101-regulated cell wall changes that prevent immune detection. Using HPLC, enzymatic degradation, and cell wall stains, I found that the rim101Δ mutation resulted in increased cell wall chitin exposure. In vitro co-culture assays demonstrated that increased chitin exposure is associated with enhanced activation of macrophages and dendritic cells. To further test this association, I demonstrated that other mutant strains with increased chitin exposure induce macrophage and dendritic cell responses similar to rim101Δ. We used primary macrophages from mutant mouse lines to demonstrate that members of both the Toll-like receptor and C-type lectin receptor families are involved in detecting strains with increased chitin exposure. Finally, in vivo immunological experiments demonstrated that the rim101Δ strain induced a global inflammatory immune response in infected mouse lungs, expanding upon our previous in vivo rim101Δ studies. These results demonstrate that cell wall organization largely determines how fungal cells are detected by the immune system.
Resumo:
Current state of the art techniques for landmine detection in ground penetrating radar (GPR) utilize statistical methods to identify characteristics of a landmine response. This research makes use of 2-D slices of data in which subsurface landmine responses have hyperbolic shapes. Various methods from the field of visual image processing are adapted to the 2-D GPR data, producing superior landmine detection results. This research goes on to develop a physics-based GPR augmentation method motivated by current advances in visual object detection. This GPR specific augmentation is used to mitigate issues caused by insufficient training sets. This work shows that augmentation improves detection performance under training conditions that are normally very difficult. Finally, this work introduces the use of convolutional neural networks as a method to learn feature extraction parameters. These learned convolutional features outperform hand-designed features in GPR detection tasks. This work presents a number of methods, both borrowed from and motivated by the substantial work in visual image processing. The methods developed and presented in this work show an improvement in overall detection performance and introduce a method to improve the robustness of statistical classification.
Resumo:
Kernel-level malware is one of the most dangerous threats to the security of users on the Internet, so there is an urgent need for its detection. The most popular detection approach is misuse-based detection. However, it cannot catch up with today's advanced malware that increasingly apply polymorphism and obfuscation. In this thesis, we present our integrity-based detection for kernel-level malware, which does not rely on the specific features of malware. We have developed an integrity analysis system that can derive and monitor integrity properties for commodity operating systems kernels. In our system, we focus on two classes of integrity properties: data invariants and integrity of Kernel Queue (KQ) requests. We adopt static analysis for data invariant detection and overcome several technical challenges: field-sensitivity, array-sensitivity, and pointer analysis. We identify data invariants that are critical to system runtime integrity from Linux kernel 2.4.32 and Windows Research Kernel (WRK) with very low false positive rate and very low false negative rate. We then develop an Invariant Monitor to guard these data invariants against real-world malware. In our experiment, we are able to use Invariant Monitor to detect ten real-world Linux rootkits and nine real-world Windows malware and one synthetic Windows malware. We leverage static and dynamic analysis of kernel and device drivers to learn the legitimate KQ requests. Based on the learned KQ requests, we build KQguard to protect KQs. At runtime, KQguard rejects all the unknown KQ requests that cannot be validated. We apply KQguard on WRK and Linux kernel, and extensive experimental evaluation shows that KQguard is efficient (up to 5.6% overhead) and effective (capable of achieving zero false positives against representative benign workloads after appropriate training and very low false negatives against 125 real-world malware and nine synthetic attacks). In our system, Invariant Monitor and KQguard cooperate together to protect data invariants and KQs in the target kernel. By monitoring these integrity properties, we can detect malware by its violation of these integrity properties during execution.
Resumo:
Due to the growing concerns associated with fossil fuels, emphasis has been placed on clean and sustainable energy generation. This has resulted in the increase in Photovoltaics (PV) units being integrated into the utility system. The integration of PV units has raised some concerns for utility power systems, including the consequences of failing to detect islanding. Numerous methods for islanding detection have been introduced in literature. They can be categorized into local methods and remote methods. The local methods are categorically divided into passive and active methods. Active methods generally have smaller Non-Detection Zone (NDZ) but the injecting disturbances will slightly degrade the power quality and reliability of the power system. Slip Mode Frequency Shift Islanding Detection Method (SMS IDM) is an active method that uses positive feedback for islanding detection. In this method, the phase angle of the converter is controlled to have a sinusoidal function of the deviation of the Point of Common Coupling (PCC) voltage frequency from the nominal grid frequency. This method has a non-detection zone which means it fails to detect islanding for specific local load conditions. If the SMS IDM employs a different function other than the sinusoidal function for drifting the phase angle of the inverter, its non-detection zone could be smaller. In addition, Advanced Slip Mode Frequency Shift Islanding Detection Method (Advanced SMS IDM), which has been introduced in this thesis, eliminates the non-detection zone of the SMS IDM. In this method the parameters of SMS IDM change based on the local load impedance value. Moreover, the stability of the system is investigated by developing the dynamical equations of the system for two operation modes; grid connected and islanded mode. It is mathematically proven that for some loading conditions the nominal frequency is an unstable point and the operation frequency slides to another stable point, while for other loading conditions the nominal frequency is the only stable point of the system upon islanding occurring. Simulation and experimental results show the accuracy of the proposed methods in detection of islanding and verify the validity of the mathematical analysis.
Resumo:
Water remains a predominant vector for human enteric pathogens not just for developing countries but also developed nations, where numerous infectious disease outbreaks, linked to the contamination of drinking water have been documented. Private drinking water wells are a source of drinking water that is largely unstudied even though a significant percentage of the population in Ontario relies on wells as their primary water source. As there exists little to no systematic surveillance for enteric infections or outbreaks related to well water sources, these individuals may be at higher risk of waterborne infectious diseases. The relationships between various fecal indicators in the water of private drinking water wells, including E. coli, Total Coliforms (TC) and Bacteroides, and enteric pathogens, including Campylobacter jejuni, Salmonella spp., and Shiga toxin producing E. coli, were studied. Convenience private well water samples collected from various regions of interest during the summer of 2014 underwent membrane filtration and culture to determine quantities of E. coli and TC colony forming units. 289 E. coli positive and 230 TC-only waters were successfully analyzed by individual qPCR assays for the aforementioned enteric pathogens. Microbial source tracking methods targeted to specific Bacteroides were used to determine the source of fecal contamination as either human or bovine. The source of fecal contamination varied by geographic region and is thought to be due to such things as differences in septic tank density and underlying geology, among others. Fecal indicators, E. coli and Bacteroides, were significantly correlated. E. coli as measured by qPCR was more strongly correlated to both total and human-specific Bacteroides genetic markers than culturable E. coli. Lastly, 1.9% of samples showed molecular evidence of contamination with enteric pathogens. Although low, this finding is significant given the limited volume of water available for testing, and suggests a potential health risk to consumers. Knowing the extent of contamination, as well as the biologic source, can better inform risk assessment and the development of potential intervention strategies for private well water in specific regions of Ontario.
Resumo:
FPGAs and GPUs are often used when real-time performance in video processing is required. An accelerated processor is chosen based on task-specific priorities (power consumption, processing time and detection accuracy), and this decision is normally made once at design time. All three characteristics are important, particularly in battery-powered systems. Here we propose a method for moving selection of processing platform from a single design-time choice to a continuous run time one.We implement Histogram of Oriented Gradients (HOG) detectors for cars and people and Mixture of Gaussians (MoG) motion detectors running across FPGA, GPU and CPU in a heterogeneous system. We use this to detect illegally parked vehicles in urban scenes. Power, time and accuracy information for each detector is characterised. An anomaly measure is assigned to each detected object based on its trajectory and location, when compared to learned contextual movement patterns. This drives processor and implementation selection, so that scenes with high behavioural anomalies are processed with faster but more power hungry implementations, but routine or static time periods are processed with power-optimised, less accurate, slower versions. Real-time performance is evaluated on video datasets including i-LIDS. Compared to power-optimised static selection, automatic dynamic implementation mapping is 10% more accurate but draws 12W extra power in our testbed desktop system.
Resumo:
BACKGROUND: Although most gastrointestinal stromal tumours (GIST) carry oncogenic mutations in KIT exons 9, 11, 13 and 17, or in platelet-derived growth factor receptor alpha (PDGFRA) exons 12, 14 and 18, around 10% of GIST are free of these mutations. Genotyping and accurate detection of KIT/PDGFRA mutations in GIST are becoming increasingly useful for clinicians in the management of the disease. METHOD: To evaluate and improve laboratory practice in GIST mutation detection, we developed a mutational screening quality control program. Eleven laboratories were enrolled in this program and 50 DNA samples were analysed, each of them by four different laboratories, giving 200 mutational reports. RESULTS: In total, eight mutations were not detected by at least one laboratory. One false positive result was reported in one sample. Thus, the mean global rate of error with clinical implication based on 200 reports was 4.5%. Concerning specific polymorphisms detection, the rate varied from 0 to 100%, depending on the laboratory. The way mutations were reported was very heterogeneous, and some errors were detected. CONCLUSION: This study demonstrated that such a program was necessary for laboratories to improve the quality of the analysis, because an error rate of 4.5% may have clinical consequences for the patient.
Resumo:
AIMS: Diagnosis of soft tissue sarcomas can be difficult. It can be aided by detection of specific genetic aberrations in many cases. This study assessed the utility of a molecular genetics/cytogenetics service as part of the routine diagnostic service at the Royal Marsden Hospital. METHODS: A retrospective audit was performed over a 15-month period to evaluate the diagnostic usefulness for soft tissue sarcomas with translocations of fluorescence in situ hybridisation (FISH) and reverse-transcriptase PCR (RT-PCR) in paraffin-embedded (PE) material. Results were compared with histology, and evaluated. RESULTS: Molecular investigations were performed on PE material in 158 samples (total 194 RT-PCR and 174 FISH tests), of which 85 were referral cases. Synovial sarcoma, Ewing sarcoma and low-grade fibromyxoid sarcoma were the most commonly tested tumours. Myxoid liposarcoma showed the best histological and molecular concordance, and alveolar rhabdomyosarcoma showed the best agreement between methods. FISH had a higher sensitivity for detecting tumours (73%, compared with 59% for RT-PCR) with a better success rate than RT-PCR, although the latter was specific in identifying the partner gene for each fusion. In particular, referral blocks in which methods of tissue fixation and processing were not certain resulted in higher RT-PCR failure rates. CONCLUSIONS: FISH and RT-PCR on PE tissue are practical and effective ancillary tools in the diagnosis of soft tissue sarcomas. They are useful in confirming doubtful histological diagnoses and excluding malignant diagnoses. PCR is less sensitive than FISH, and the use of both techniques is optimal for maximising the detection rate of translocation-positive sarcomas.
Resumo:
Emerging cybersecurity vulnerabilities in supervisory control and data acquisition (SCADA) systems are becoming urgent engineering issues for modern substations. This paper proposes a novel intrusion detection system (IDS) tailored for cybersecurity of IEC 61850 based substations. The proposed IDS integrates physical knowledge, protocol specifications and logical behaviours to provide a comprehensive and effective solution that is able to mitigate various cyberattacks. The proposed approach comprises access control detection, protocol whitelisting, model-based detection, and multi-parameter based detection. This SCADA-specific IDS is implemented and validated using a comprehensive and realistic cyber-physical test-bed and data from a real 500kV smart substation.
Resumo:
The aim of this study was to develop a multiplex loop-mediated isothermal amplification (LAMP) method capable of detecting Escherichia coli generally and verocytotoxigenic E. coli (VTEC) specifically in beef and bovine faeces. The LAMP assay developed was highly specific (100%) and able to distinguish between E. coli and VTEC based on the amplification of the phoA, and stx1 and/or stx2 genes, respectively. In the absence of an enrichment step, the limit of detection 50% (LOD50) of the LAMP assay was determined to be 2.83, 3.17 and 2.83-3.17 log CFU/g for E. coli with phoA, stx1 and stx2 genes, respectively, when artificially inoculated minced beef and bovine faeces were tested. The LAMP calibration curves generated with pure cultures, and spiked beef and faeces, suggested that the assay had good quantification capability. Validation of the assay, performed using retail beef and bovine faeces samples, demonstrated good correlation between counts obtained by the LAMP assay and by a conventional culture method, but suggested the possibility of false negative LAMP results for 12.5-14.7% of samples tested. The multiplex LAMP assay developed potentially represents a rapid alternative to culture for monitoring E.coli levels in beef or faeces and it would provide additional information on the presence of VTEC. However, some further optimisation is needed to improve detection sensitivity.
Resumo:
Sensitive detection of pathogens is critical to ensure the safety of food supplies and to prevent bacterial disease infection and outbreak at the first onset. While conventional techniques such as cell culture, ELISA, PCR, etc. have been used as the predominant detection workhorses, they are however limited by either time-consuming procedure, complicated sample pre-treatment, expensive analysis and operation, or inability to be implemented at point-of-care testing. Here, we present our recently developed assay exploiting enzyme-induced aggregation of plasmonic gold nanoparticles (AuNPs) for label-free and ultrasensitive detection of bacterial DNA. In the experiments, AuNPs are first functionalized with specific, single-stranded RNA probes so that they exhibit high stability in solution even under high electrolytic condition thus exhibiting red color. When bacterial DNA is present in a sample, a DNA-RNA heteroduplex will be formed and subsequently prone to the RNase H cleavage on the RNA probe, allowing the DNA to liberate and hybridize with another RNA strand. This continuously happens until all of the RNA strands are cleaved, leaving the nanoparticles ‘unprotected’. The addition of NaCl will cause the ‘unprotected’ nanoparticles to aggregate, initiating a colour change from red to blue. The reaction is performed in a multi-well plate format, and the distinct colour signal can be discriminated by naked eye or simple optical spectroscopy. As a result, bacterial DNA as low as pM could be unambiguously detected, suggesting that the enzyme-induced aggregation of AuNPs assay is very easy to perform and sensitive, it will significantly benefit to development of fast and ultrasensitive methods that can be used for disease detection and diagnosis.
Resumo:
The development of an ultrasensitive biosensor for the low-cost and on-site detection of pathogenic DNA could transform detection capabilities within food safety, environmental monitoring and clinical diagnosis. Herein, we present an innovative approach exploiting endonuclease-controlled aggregation of plasmonic gold nanoparticles (AuNPs) for label-free and ultrasensitive detection of bacterial DNA. The method utilizes RNA-functionalized AuNPs which form DNA-RNA heteroduplex structures through specific hybridization with target DNA. Once formed, the DNA-RNA heteroduplex is susceptible to RNAse H enzymatic cleavage of the RNA probe, allowing the target DNA to liberate and hybridize with another RNA probe. This continuously happens until all of the RNA probes are cleaved, leaving the nanoparticles unprotected and thus aggregated upon exposure to a high electrolytic medium. The assay is ultrasensitive, allowing the detection of target DNA at femtomolar level by simple spectroscopic analysis (40.7 fM and 2.45 fM as measured by UV-vis and dynamic light scattering (DLS), respectively). The target DNA spiked food matrix (chicken meat) is also successfully detected at a concentration of 1.2 pM (by UV-vis) or 18.0 fM (by DLS). In addition to the ultra-high sensitivity, the total analysis time of the assay is less than 3 hours, thus demonstrating its practicality for food analysis.
Resumo:
This paper provides an overview of IDS types and how they work as well as configuration considerations and issues that affect them. Advanced methods of increasing the performance of an IDS are explored such as specification based IDS for protecting Supervisory Control And Data Acquisition (SCADA) and Cloud networks. Also by providing a review of varied studies ranging from issues in configuration and specific problems to custom techniques and cutting edge studies a reference can be provided to others interested in learning about and developing IDS solutions. Intrusion Detection is an area of much required study to provide solutions to satisfy evolving services and networks and systems that support them. This paper aims to be a reference for IDS technologies other researchers and developers interested in the field of intrusion detection.
Resumo:
Puccinia psidii (Myrtle rust) is an emerging pathogen that has a wide host range in the Myrtaceae family; it continues to show an increase in geographic range and is considered to be a significant threat to Myrtaceae plants worldwide. In this study, we describe the development and validation of three novel real-time polymerase reaction (qPCR) assays using ribosomal DNA and β-tubulin gene sequences to detect P. psidii. All qPCR assays were able to detect P. psidii DNA extracted from urediniospores and from infected plants, including asymptomatic leaf tissues. Depending on the gene target, qPCR was able to detect down to 0.011 pg of P. psidii DNA. The most optimum qPCR assay was shown to be highly specific, repeatable, and reproducible following testing using different qPCR reagents and real-time PCR platforms in different laboratories. In addition, a duplex qPCR assay was developed to allow coamplification of the cytochrome oxidase gene from host plants for use as an internal PCR control. The most optimum qPCR assay proved to be faster and more sensitive than the previously published nested PCR assay and will be particularly useful for high-throughput testing and to detect P. psidii at the early stages of infection, before the development of sporulating rust pustules.