901 resultados para temporal speech information
Resumo:
We propose a study of the mathematical properties of voice as an audio signal -- This work includes signals in which the channel conditions are not ideal for emotion recognition -- Multiresolution analysis- discrete wavelet transform – was performed through the use of Daubechies Wavelet Family (Db1-Haar, Db6, Db8, Db10) allowing the decomposition of the initial audio signal into sets of coefficients on which a set of features was extracted and analyzed statistically in order to differentiate emotional states -- ANNs proved to be a system that allows an appropriate classification of such states -- This study shows that the extracted features using wavelet decomposition are enough to analyze and extract emotional content in audio signals presenting a high accuracy rate in classification of emotional states without the need to use other kinds of classical frequency-time features -- Accordingly, this paper seeks to characterize mathematically the six basic emotions in humans: boredom, disgust, happiness, anxiety, anger and sadness, also included the neutrality, for a total of seven states to identify
Resumo:
While humans can easily segregate and track a speaker's voice in a loud noisy environment, most modern speech recognition systems still perform poorly in loud background noise. The computational principles behind auditory source segregation in humans is not yet fully understood. In this dissertation, we develop a computational model for source segregation inspired by auditory processing in the brain. To support the key principles behind the computational model, we conduct a series of electro-encephalography experiments using both simple tone-based stimuli and more natural speech stimulus. Most source segregation algorithms utilize some form of prior information about the target speaker or use more than one simultaneous recording of the noisy speech mixtures. Other methods develop models on the noise characteristics. Source segregation of simultaneous speech mixtures with a single microphone recording and no knowledge of the target speaker is still a challenge. Using the principle of temporal coherence, we develop a novel computational model that exploits the difference in the temporal evolution of features that belong to different sources to perform unsupervised monaural source segregation. While using no prior information about the target speaker, this method can gracefully incorporate knowledge about the target speaker to further enhance the segregation.Through a series of EEG experiments we collect neurological evidence to support the principle behind the model. Aside from its unusual structure and computational innovations, the proposed model provides testable hypotheses of the physiological mechanisms of the remarkable perceptual ability of humans to segregate acoustic sources, and of its psychophysical manifestations in navigating complex sensory environments. Results from EEG experiments provide further insights into the assumptions behind the model and provide motivation for future single unit studies that can provide more direct evidence for the principle of temporal coherence.
Resumo:
Importance: critical illness results in disability and reduced health-related quality of life (HRQOL), but the optimum timing and components of rehabilitation are uncertain. Objective: to evaluate the effect of increasing physical and nutritional rehabilitation plus information delivered during the post–intensive care unit (ICU) acute hospital stay by dedicated rehabilitation assistants on subsequent mobility, HRQOL, and prevalent disabilities. Design, Setting, and Participants: a parallel group, randomized clinical trial with blinded outcome assessment at 2 hospitals in Edinburgh, Scotland, of 240 patients discharged from the ICU between December 1, 2010, and January 31, 2013, who required at least 48 hours of mechanical ventilation. Analysis for the primary outcome and other 3-month outcomes was performed between June and August 2013; for the 6- and 12-month outcomes and the health economic evaluation, between March and April 2014. Interventions: during the post-ICU hospital stay, both groups received physiotherapy and dietetic, occupational, and speech/language therapy, but patients in the intervention group received rehabilitation that typically increased the frequency of mobility and exercise therapies 2- to 3-fold, increased dietetic assessment and treatment, used individualized goal setting, and provided greater illness-specific information. Intervention group therapy was coordinated and delivered by a dedicated rehabilitation practitioner. Main Outcomes and Measures: the Rivermead Mobility Index (RMI) (range 0-15) at 3 months; higher scores indicate greater mobility. Secondary outcomes included HRQOL, psychological outcomes, self-reported symptoms, patient experience, and cost-effectiveness during a 12-month follow-up (completed in February 2014). Results: median RMI at randomization was 3 (interquartile range [IQR], 1-6) and at 3 months was 13 (IQR, 10-14) for the intervention and usual care groups (mean difference, −0.2 [95% CI, −1.3 to 0.9; P = .71]). The HRQOL scores were unchanged by the intervention (mean difference in the Physical Component Summary score, −0.1 [95% CI, −3.3 to 3.1; P = .96]; and in the Mental Component Summary score, 0.2 [95% CI, −3.4 to 3.8; P = .91]). No differences were found for self-reported symptoms of fatigue, pain, appetite, joint stiffness, or breathlessness. Levels of anxiety, depression, and posttraumatic stress were similar, as were hand grip strength and the timed Up & Go test. No differences were found at the 6- or 12-month follow-up for any outcome measures. However, patients in the intervention group reported greater satisfaction with physiotherapy, nutritional support, coordination of care, and information provision. Conclusions and Relevance: post-ICU hospital-based rehabilitation, including increased physical and nutritional therapy plus information provision, did not improve physical recovery or HRQOL, but improved patient satisfaction with many aspects of recovery.
Resumo:
A flexible and multipurpose bio-inspired hierarchical model for analyzing musical timbre is presented in this paper. Inspired by findings in the fields of neuroscience, computational neuroscience, and psychoacoustics, not only does the model extract spectral and temporal characteristics of a signal, but it also analyzes amplitude modulations on different timescales. It uses a cochlear filter bank to resolve the spectral components of a sound, lateral inhibition to enhance spectral resolution, and a modulation filter bank to extract the global temporal envelope and roughness of the sound from amplitude modulations. The model was evaluated in three applications. First, it was used to simulate subjective data from two roughness experiments. Second, it was used for musical instrument classification using the k-NN algorithm and a Bayesian network. Third, it was applied to find the features that characterize sounds whose timbres were labeled in an audiovisual experiment. The successful application of the proposed model in these diverse tasks revealed its potential in capturing timbral information.
Resumo:
Verbal fluency is the ability to produce a satisfying sequence of spoken words during a given time interval. The core of verbal fluency lies in the capacity to manage the executive aspects of language. The standard scores of the semantic verbal fluency test are broadly used in the neuropsychological assessment of the elderly, and different analytical methods are likely to extract even more information from the data generated in this test. Graph theory, a mathematical approach to analyze relations between items, represents a promising tool to understand a variety of neuropsychological states. This study reports a graph analysis of data generated by the semantic verbal fluency test by cognitively healthy elderly (NC), patients with Mild Cognitive Impairment – subtypes amnestic(aMCI) and amnestic multiple domain (a+mdMCI) - and patients with Alzheimer’s disease (AD). Sequences of words were represented as a speech graph in which every word corresponded to a node and temporal links between words were represented by directed edges. To characterize the structure of the data we calculated 13 speech graph attributes (SGAs). The individuals were compared when divided in three (NC – MCI – AD) and four (NC – aMCI – a+mdMCI – AD) groups. When the three groups were compared, significant differences were found in the standard measure of correct words produced, and three SGA: diameter, average shortest path, and network density. SGA sorted the elderly groups with good specificity and sensitivity. When the four groups were compared, the groups differed significantly in network density, except between the two MCI subtypes and NC and aMCI. The diameter of the network and the average shortest path were significantly different between the NC and AD, and between aMCI and AD. SGA sorted the elderly in their groups with good specificity and sensitivity, performing better than the standard score of the task. These findings provide support for a new methodological frame to assess the strength of semantic memory through the verbal fluency task, with potential to amplify the predictive power of this test. Graph analysis is likely to become clinically relevant in neurology and psychiatry, and may be particularly useful for the differential diagnosis of the elderly.
Resumo:
It has been recently shownthat localfield potentials (LFPs)fromthe auditory and visual cortices carry information about sensory stimuli, but whether this is a universal property of sensory cortices remains to be determined. Moreover, little is known about the temporal dynamics of sensory information contained in LFPs following stimulus onset. Here we investigated the time course of the amount of stimulus information in LFPs and spikes from the gustatory cortex of awake rats subjected to tastants and water delivery on the tongue. We found that the phase and amplitude of multiple LFP frequencies carry information about stimuli, which have specific time courses after stimulus delivery. The information carried by LFP phase and amplitude was independent within frequency bands, since the joint information exhibited neither synergy nor redundancy. Tastant information in LFPs was also independent and had a different time course from the information carried by spikes. These findings support the hypothesis that the brain uses different frequency channels to dynamically code for multiple features of a stimulus.
Resumo:
Western Pacific hydrothermal vents will soon be subjected to deep-sea mining and peripheral sites are considered the most practical targets. The limited information on community dynamics and temporal change in these communities makes it difficult to anticipate the impact of mining activities and recovery trajectories. We studied community composition of peripheral communities along a cline in hydrothermal chemistry on the Eastern Lau Spreading Center and Valu Fa Ridge (ELSC-VFR) and also studied patterns of temporal change. Peripheral communities located in the northern vent fields of the ELSC-VFR are significantly different from those in the southern vent fields. Higher abundances of zoanthids and anemones were found in northern peripheral sites and the symbiont-containing mussel Bathymodiolus brevior, brisingid seastars and polynoids were only present in the northern peripheral sites. By contrast, certain faunal groups were seen only in the southern peripheral sites, such as lollipop sponges, pycnogonids and ophiuroids. Taxonomic richness of the peripheral communities was similar to that of active vent communities, due to the presence of non-vent endemic species that balanced the absence of species found in areas of active venting. The communities present at waning active sites resemble those of peripheral sites, indicating that peripheral species can colonize previously active vent sites in addition to settling in the periphery of areas of venting. Growth and mortality were observed in a number of the normally slow-growing cladorhizid stick sponges, indicating that these animals may exhibit life history strategies in the vicinity of vents that differ from those previously recorded. A novel facultative association between polynoids and anemones is proposed based on their correlated distributions.
Resumo:
Eye-tracking was used to examine how younger and older adults use syntactic and semantic information to disambiguate noun/verb (NV) homographs (e.g., park). We find that young adults exhibit inflated first fixations to NV-homographs when only syntactic cues are available for disambiguation (i.e., in syntactic prose). This effect is eliminated with the addition of disambiguating semantic information. Older adults (60+) as a group fail to show the first fixation effect in syntactic prose; they instead reread NV homographs longer. This pattern mirrors that in prior event-related potential work (Lee & Federmeier, 2009, 2011), which reported a sustained frontal negativity to NV-homographs in syntactic prose for young adults, which was eliminated by semantic constraints. The frontal negativity was not observed in older adults as a group, although older adults with high verbal fluency showed the young-like pattern. Analyses of individual differences in eye-tracking patterns revealed a similar effect of verbal fluency in both young and older adults: high verbal fluency groups of both ages show larger first fixation effects, while low verbal fluency groups show larger downstream costs (rereading and/or refixating NV homographs). Jointly, the eye-tracking and ERP data suggest that effortful meaning selection recruits frontal brain areas important for suppressing contextually inappropriate meanings, which also slows eye movements. Efficacy of fronto-temporal circuitry, as captured by verbal fluency, predicts the success of engaging these mechanisms in both young and older adults. Failure to recruit these processes requires compensatory rereading or leads to comprehension failures (Lee & Federmeier, in press).
Resumo:
Older adults frequently report that they can hear what they have been told but cannot understand the meaning. This is particularly true in noisy conditions, where the additional challenge of suppressing irrelevant noise (i.e. a competing talker) adds another layer of difficulty to their speech understanding. Hearing aids improve speech perception in quiet, but their success in noisy environments has been modest, suggesting that peripheral hearing loss may not be the only factor in the older adult’s perceptual difficulties. Recent animal studies have shown that auditory synapses and cells undergo significant age-related changes that could impact the integrity of temporal processing in the central auditory system. Psychoacoustic studies carried out in humans have also shown that hearing loss can explain the decline in older adults’ performance in quiet compared to younger adults, but these psychoacoustic measurements are not accurate in describing auditory deficits in noisy conditions. These results would suggest that temporal auditory processing deficits could play an important role in explaining the reduced ability of older adults to process speech in noisy environments. The goals of this dissertation were to understand how age affects neural auditory mechanisms and at which level in the auditory system these changes are particularly relevant for explaining speech-in-noise problems. Specifically, we used non-invasive neuroimaging techniques to tap into the midbrain and the cortex in order to analyze how auditory stimuli are processed in younger (our standard) and older adults. We will also attempt to investigate a possible interaction between processing carried out in the midbrain and cortex.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ecologia, 2016.
Resumo:
The extent of the Brazilian Atlantic rainforest, a global biodiversity hotspot, has been reduced to less than 7% of its original range. Yet, it contains one of the richest butterfly fauna in the world. Butterflies are commonly used as environmental indicators, mostly because of their strict association with host plants, microclimate and resource availability. This research describes diversity, composition and species richness of frugivorous butterflies in a forest fragment in the Brazilian Northeast. It compares communities in different physiognomies and seasons. The climate in the study area is classified as tropical rainy, with two well defined seasons. Butterfly captures were made with 60 Van Someren-Rydon traps, randomly located within six different habitat units (10 traps per unit) that varied from very open (e.g. coconut plantation) to forest interior. Sampling was made between January and December 2008, for five days each month. I captured 12090 individuals from 32 species. The most abundant species were Taygetis laches, Opsiphanes invirae and Hamadryas februa, which accounted for 70% of all captures. Similarity analysis identified two main groups, one of species associated with open or disturbed areas and a second by species associated with shaded areas. There was a strong seasonal component in species composition, with less species and lower abundance in the dry season and more species and higher abundance in the rainy season. K-means analysis indicates that choice of habitat units overestimated faunal perceptions, suggesting less distinct units. The species Taygetis virgilia, Hamadryas chloe, Callicore pygas e Morpho achilles were associated with less disturbed habitats, while Yphthimoides sp, Historis odius, H. acheronta, Hamadryas feronia e Siderone marthesia likey indicate open or disturbed habitats. This research brings important information for conservation of frugivorous butterflies, and will serve as baseline for future projects in environmental monitoring
Resumo:
Thanks to the advanced technologies and social networks that allow the data to be widely shared among the Internet, there is an explosion of pervasive multimedia data, generating high demands of multimedia services and applications in various areas for people to easily access and manage multimedia data. Towards such demands, multimedia big data analysis has become an emerging hot topic in both industry and academia, which ranges from basic infrastructure, management, search, and mining to security, privacy, and applications. Within the scope of this dissertation, a multimedia big data analysis framework is proposed for semantic information management and retrieval with a focus on rare event detection in videos. The proposed framework is able to explore hidden semantic feature groups in multimedia data and incorporate temporal semantics, especially for video event detection. First, a hierarchical semantic data representation is presented to alleviate the semantic gap issue, and the Hidden Coherent Feature Group (HCFG) analysis method is proposed to capture the correlation between features and separate the original feature set into semantic groups, seamlessly integrating multimedia data in multiple modalities. Next, an Importance Factor based Temporal Multiple Correspondence Analysis (i.e., IF-TMCA) approach is presented for effective event detection. Specifically, the HCFG algorithm is integrated with the Hierarchical Information Gain Analysis (HIGA) method to generate the Importance Factor (IF) for producing the initial detection results. Then, the TMCA algorithm is proposed to efficiently incorporate temporal semantics for re-ranking and improving the final performance. At last, a sampling-based ensemble learning mechanism is applied to further accommodate the imbalanced datasets. In addition to the multimedia semantic representation and class imbalance problems, lack of organization is another critical issue for multimedia big data analysis. In this framework, an affinity propagation-based summarization method is also proposed to transform the unorganized data into a better structure with clean and well-organized information. The whole framework has been thoroughly evaluated across multiple domains, such as soccer goal event detection and disaster information management.
Resumo:
The study of acoustic communication in animals often requires not only the recognition of species specific acoustic signals but also the identification of individual subjects, all in a complex acoustic background. Moreover, when very long recordings are to be analyzed, automatic recognition and identification processes are invaluable tools to extract the relevant biological information. A pattern recognition methodology based on hidden Markov models is presented inspired by successful results obtained in the most widely known and complex acoustical communication signal: human speech. This methodology was applied here for the first time to the detection and recognition of fish acoustic signals, specifically in a stream of round-the-clock recordings of Lusitanian toadfish (Halobatrachus didactylus) in their natural estuarine habitat. The results show that this methodology is able not only to detect the mating sounds (boatwhistles) but also to identify individual male toadfish, reaching an identification rate of ca. 95%. Moreover this method also proved to be a powerful tool to assess signal durations in large data sets. However, the system failed in recognizing other sound types.
Resumo:
Prostate cancer is the most common non-dermatological cancer amongst men in the developed world. The current definitive diagnosis is core needle biopsy guided by transrectal ultrasound. However, this method suffers from low sensitivity and specificity in detecting cancer. Recently, a new ultrasound based tissue typing approach has been proposed, known as temporal enhanced ultrasound (TeUS). In this approach, a set of temporal ultrasound frames is collected from a stationary tissue location without any intentional mechanical excitation. The main aim of this thesis is to implement a deep learning-based solution for prostate cancer detection and grading using TeUS data. In the proposed solution, convolutional neural networks are trained to extract high-level features from time domain TeUS data in temporally and spatially adjacent frames in nine in vivo prostatectomy cases. This approach avoids information loss due to feature extraction and also improves cancer detection rate. The output likelihoods of two TeUS arrangements are then combined to form our novel decision support system. This deep learning-based approach results in the area under the receiver operating characteristic curve (AUC) of 0.80 and 0.73 for prostate cancer detection and grading, respectively, in leave-one-patient-out cross-validation. Recently, multi-parametric magnetic resonance imaging (mp-MRI) has been utilized to improve detection rate of aggressive prostate cancer. In this thesis, for the first time, we present the fusion of mp-MRI and TeUS for characterization of prostate cancer to compensates the deficiencies of each image modalities and improve cancer detection rate. The results obtained using TeUS are fused with those attained using consolidated mp-MRI maps from multiple MR modalities and cancer delineations on those by multiple clinicians. The proposed fusion approach yields the AUC of 0.86 in prostate cancer detection. The outcomes of this thesis emphasize the viable potential of TeUS as a tissue typing method. Employing this ultrasound-based intervention, which is non-invasive and inexpensive, can be a valuable and practical addition to enhance the current prostate cancer detection.
Resumo:
In this paper we discuss the temporal aspects of indexing and classification in information systems. Basing this discussion off of the three sources of research of scheme change: of indexing: (1) analytical research on the types of scheme change and (2) empirical data on scheme change in systems and (3) evidence of cataloguer decision-making in the context of scheme change. From this general discussion we propose two constructs along which we might craft metrics to measure scheme change: collocative integrity and semantic gravity. The paper closes with a discussion of these constructs.