879 resultados para swarm intelligence
Resumo:
Esta memoria es el resultado de un proyecto cuyo objetivo ha sido realizar un análisis de la posible aplicación de técnicas relativas al Process Mining para entornos AmI (Ambient Intelligence). Dicho análisis tiene la facultad de presentar de forma clara los resultados extraídos de los procesos relativos a un caso de uso planteado, así como de aplicar dichos resultados a aplicaciones relativas a entornos AmI, como automatización de tareas o simulación social basada en agentes. Para que dicho análisis sea comprensible por el lector, se presentan detalladas explicaciones de los conceptos tratados y las técnicas empleadas. Además, se analizan exhaustivamente las dos herramientas software más utilizadas en cuanto a minería de procesos se refiere, ProM y Disco, presentando ventajas e inconvenientes de cada una, así como una comparación entre las dos. Posteriormente se ha desarrollado una metodología para el análisis de procesos con la herramienta ProM, anteriormente mencionada, explicando cuidadosamente cada uno de los pasos así como los fundamentos de los algoritmos utilizados. Por último, se han presentado las conclusiones extraídas del trabajo, así como las posibles líneas de continuación del proyecto.
Resumo:
Peer reviewed
Resumo:
We thank all the supporting team-members involved in the translation procedures and data collections. Research was supported by the Polish NCN Grant 2011/03/N/HS6/05112 (K.K.) and Chinese NNSF Grant 31200788 (C.X).
Resumo:
Computational Swarms (enxames computacionais), consistindo da integração de sensores e atuadores inteligentes no nosso mundo conectado, possibilitam uma extensão da info-esfera no mundo físico. Nós chamamos esta info-esfera extendida, cíber-física, de Swarm. Este trabalho propõe uma visão de Swarm onde dispositivos computacionais cooperam dinâmica e oportunisticamente, gerando redes orgânicas e heterogêneas. A tese apresenta uma arquitetura computacional do Plano de Controle do Sistema Operacional do Swarm, que é uma camada de software distribuída embarcada em todos os dispositivos que fazem parte do Swarm, responsável por gerenciar recursos, definindo atores, como descrever e utilizar serviços e recursos (como divulgá-los e descobrí-los, como realizar transações, adaptações de conteúdos e cooperação multiagentes). O projeto da arquitetura foi iniciado com uma revisão da caracterização do conceito de Swarm, revisitando a definição de termos e estabelecendo uma terminologia para ser utilizada. Requisitos e desafios foram identificados e uma visão operacional foi proposta. Esta visão operacional foi exercitada com casos de uso e os elementos arquiteturais foram extraídos dela e organizados em uma arquitetura. A arquitetura foi testada com os casos de uso, gerando revisões do sistema. Cada um dos elementos arquiteturais requereram revisões do estado da arte. Uma prova de conceito do Plano de Controle foi implementada e uma demonstração foi proposta e implementada. A demonstração selecionada foi o Smart Jukebox, que exercita os aspectos distribuídos e a dinamicidade do sistema proposto. Este trabalho apresenta a visão do Swarm computacional e apresenta uma plataforma aplicável na prática. A evolução desta arquitetura pode ser a base de uma rede global, heterogênea e orgânica de redes de dispositivos computacionais alavancando a integração de sistemas cíber-físicos na núvem permitindo a cooperação de sistemas escaláveis e flexíveis, interoperando para alcançar objetivos comuns.
Resumo:
Reactive power is critical to the operation of the power networks on both safety aspects and economic aspects. Unreasonable distribution of the reactive power would severely affect the power quality of the power networks and increases the transmission loss. Currently, the most economical and practical approach to minimizing the real power loss remains using reactive power dispatch method. Reactive power dispatch problem is nonlinear and has both equality constraints and inequality constraints. In this thesis, PSO algorithm and MATPOWER 5.1 toolbox are applied to solve the reactive power dispatch problem. PSO is a global optimization technique that is equipped with excellent searching capability. The biggest advantage of PSO is that the efficiency of PSO is less sensitive to the complexity of the objective function. MATPOWER 5.1 is an open source MATLAB toolbox focusing on solving the power flow problems. The benefit of MATPOWER is that its code can be easily used and modified. The proposed method in this thesis minimizes the real power loss in a practical power system and determines the optimal placement of a new installed DG. IEEE 14 bus system is used to evaluate the performance. Test results show the effectiveness of the proposed method.
Resumo:
This work presents the main theories and models formulated with the purpose of offering a global overview on the acquisition of knowledge and skills involved in the initial development of expert competence. Setting from this background, we developed an empirical work whose main purpose is to define those factors in a complex learning situation such as chapter-sized in a knowledge-rich domain. The results obtained in a sample of Master students reveal that the several variables intervening, such as the qualitative organization of knowledge, intellectual ability, motivation, the deliberate use of strategies, and a rich learning environment, contribute in an independent way to provide an explanation for the acquired knowledge.
Open business intelligence: on the importance of data quality awareness in user-friendly data mining
Resumo:
Citizens demand more and more data for making decisions in their daily life. Therefore, mechanisms that allow citizens to understand and analyze linked open data (LOD) in a user-friendly manner are highly required. To this aim, the concept of Open Business Intelligence (OpenBI) is introduced in this position paper. OpenBI facilitates non-expert users to (i) analyze and visualize LOD, thus generating actionable information by means of reporting, OLAP analysis, dashboards or data mining; and to (ii) share the new acquired information as LOD to be reused by anyone. One of the most challenging issues of OpenBI is related to data mining, since non-experts (as citizens) need guidance during preprocessing and application of mining algorithms due to the complexity of the mining process and the low quality of the data sources. This is even worst when dealing with LOD, not only because of the different kind of links among data, but also because of its high dimensionality. As a consequence, in this position paper we advocate that data mining for OpenBI requires data quality-aware mechanisms for guiding non-expert users in obtaining and sharing the most reliable knowledge from the available LOD.
Resumo:
In this work, we present a multi-camera surveillance system based on the use of self-organizing neural networks to represent events on video. The system processes several tasks in parallel using GPUs (graphic processor units). It addresses multiple vision tasks at various levels, such as segmentation, representation or characterization, analysis and monitoring of the movement. These features allow the construction of a robust representation of the environment and interpret the behavior of mobile agents in the scene. It is also necessary to integrate the vision module into a global system that operates in a complex environment by receiving images from multiple acquisition devices at video frequency. Offering relevant information to higher level systems, monitoring and making decisions in real time, it must accomplish a set of requirements, such as: time constraints, high availability, robustness, high processing speed and re-configurability. We have built a system able to represent and analyze the motion in video acquired by a multi-camera network and to process multi-source data in parallel on a multi-GPU architecture.
Resumo:
Although the study of factors affecting career success has shown connections between biographical and other aspects related to ability, knowledge and personality, few studies have examined the relationship be-tween emotional intelligence and professional success at the initial career stage. When these studies were carried out, the results showed significant relationships between the dimensions of emotional intelligence (emotional self-awareness, self-regulation, social awareness or social skills) and the level of professional competence. In this paper, we analyze the relationship between perceived emotional intelligence, measured by the Trait Meta-Mood Scale (TMMS-24) questionnaire, general intelligence assessed by the Cattell factor "g" test, scale 3, and extrinsic indicators of career success, in a sample of 130 graduates at the beginning of their careers. Results from hierarchical regression analysis indicate that emotional intelligence makes a specific contribution to the prediction of salary, after controlling the general intelligence effect. The perceived emotional intelligence dimensions of TMMS repair, TMMS attention and sex show a higher correlation and make a greater contribution to professional success than general intelligence. The implications of these results for the development of socio-emotional skills among University graduates are discussed.
Resumo:
We present a derivative-free optimization algorithm coupled with a chemical process simulator for the optimal design of individual and complex distillation processes using a rigorous tray-by-tray model. The proposed approach serves as an alternative tool to the various models based on nonlinear programming (NLP) or mixed-integer nonlinear programming (MINLP) . This is accomplished by combining the advantages of using a commercial process simulator (Aspen Hysys), including especially suited numerical methods developed for the convergence of distillation columns, with the benefits of the particle swarm optimization (PSO) metaheuristic algorithm, which does not require gradient information and has the ability to escape from local optima. Our method inherits the superstructure developed in Yeomans, H.; Grossmann, I. E.Optimal design of complex distillation columns using rigorous tray-by-tray disjunctive programming models. Ind. Eng. Chem. Res.2000, 39 (11), 4326–4335, in which the nonexisting trays are considered as simple bypasses of liquid and vapor flows. The implemented tool provides the optimal configuration of distillation column systems, which includes continuous and discrete variables, through the minimization of the total annual cost (TAC). The robustness and flexibility of the method is proven through the successful design and synthesis of three distillation systems of increasing complexity.
Resumo:
Business Intelligence (BI) applications have been gradually ported to the Web in search of a global platform for the consumption and publication of data and services. On the Internet, apart from techniques for data/knowledge management, BI Web applications need interfaces with a high level of interoperability (similar to the traditional desktop interfaces) for the visualisation of data/knowledge. In some cases, this has been provided by Rich Internet Applications (RIA). The development of these BI RIAs is a process traditionally performed manually and, given the complexity of the final application, it is a process which might be prone to errors. The application of model-driven engineering techniques can reduce the cost of development and maintenance (in terms of time and resources) of these applications, as they demonstrated by other types of Web applications. In the light of these issues, the paper introduces the Sm4RIA-B methodology, i.e., a model-driven methodology for the development of RIA as BI Web applications. In order to overcome the limitations of RIA regarding knowledge management from the Web, this paper also presents a new RIA platform for BI, called RI@BI, which extends the functionalities of traditional RIAs by means of Semantic Web technologies and B2B techniques. Finally, we evaluate the whole approach on a case study—the development of a social network site for an enterprise project manager.
Resumo:
In order to determine the contribution of emotional intelligence (EI) to career success, in this study, we analyzed the relationship between trait EI (TEI), general mental ability (GMA), the big five personality traits, and career success indicators, in a sample of 130 graduates who were in the early stages of their careers. Results from hierarchical regression analyses indicated that TEI, and especially its dimension “repair,” has incremental validity in predicting one of the career success indicators (salary) after controlling for GMA and personality. These findings provide support for the use of TEI measures as predictors of career success in the early stage.
Resumo:
In the last few years, one of the lines of research of great interest in the field of emotional intelligence (EI) has been the analysis of the role of emotions in the educational context and, in particular, their influence on learning strategies. The aims of this study are to identify the existence of different EI profiles and to determine possible statistically significant differences in learning strategies between the obtained profiles. The study involved 1253 Chilean school students from 14 to 18 years (M = 15.10, SD = 1.30), who completed the Trait Meta-Mood Scale-24 (TMMS-24) and the Inventory of Learning and Study Strategies—High School version (LASSI-HS). Cluster analysis identified four EI profiles: a group of adolescents with a high EI profile, a group with predominance of low emotional attention and high repair skills, a group with high scores on attention and low scores on clarity and repair, and a final group of adolescents with low EI. Also, students in groups with high overall scores in EI and low attention and high repair emotional obtained higher scores on the different learning strategies; however, the effect size analysis showed that these differences had no empirical relevance.