986 resultados para surface composition
Resumo:
Phytoplankton composition and biomass was investigated across the southern Indian Ocean. Phytoplankton composition was determined from pigment analysis with subsequent calculations of group contributions to total chlorophyll a (Chl a) using CHEMTAX and, in addition, by examination in the microscope. The different plankton communities detected reflected the different water masses along a transect from Cape Town, South Africa, to Broome, Australia. The first station was influenced by the Agulhas Current with a very deep mixed surface layer. Based on pigment analysis this station was dominated by haptophytes, pelagophytes, cyanobacteria, and prasinophytes. Sub-Antarctic waters of the Southern Ocean were encountered at the next station, where new nutrients were intruded to the surface layer and the total Chl a concentration reached high concentrations of 1.7 µg Chl a/L with increased proportions of diatoms and dinoflagellates. The third station was also influenced by Southern Ocean waters, but located in a transition area on the boundary to subtropical water. Prochlorophytes appeared in the samples and Chl a was low, i.e., 0.3 µg/L in the surface with prevalence of haptophytes, pelagophytes, and cyanobacteria. The next two stations were located in the subtropical gyre with little mixing and general oligotrophic conditions where prochlorophytes, haptophytes and pelagophytes dominated. The last two stations were located in tropical waters influenced by down-welling of the Leeuwin Current and particularly prochlorophytes dominated at these two stations, but also pelagophytes, haptophytes and cyanobacteria were abundant. Haptophytes Type 6 (sensu Zapata et al., 2004), most likely Emiliania huxleyi, and pelagophytes were the dominating eucaryotes in the southern Indian Ocean. Prochlorophytes dominated in the subtrophic and oligotrophic eastern Indian Ocean where Chl a was low, i.e., 0.043-0.086 µg total Chl a/L in the surface, and up to 0.4 µg Chl a/L at deep Chl a maximum. From the pigment analyses it was found that the dinoflagellates of unknown trophy enumerated in the microscope at the oligotrophic stations were possibly heterotrophic or mixotrophic. Presence of zeaxanthin containing heterotrophic bacteria may have increased the abundance of cyanobacteria determined by CHEMTAX.
Resumo:
Silicon isotopes are a powerful tool to investigate the cycling of dissolved silicon (Si). In this study the distribution of the Si isotope composition of dissolved silicic acid (d30Si(OH)4) was analyzed in the water column of the Eastern Equatorial Pacific (EEP) where one of the globally largest Oxygen Minimum Zones (OMZs) is located. Samples were collected at 7 stations along two meridional transects from the equator to 14°S at 85°50'W and 82°00'W off the Ecuadorian and Peruvian coast. Surface waters show a large range in isotope compositions d30Si(OH)4 (+2.2 per mil to +4.4 per mil) with the highest values found at the southernmost station at 14°S. This station also revealed the most depleted silicic acid concentrations (0.2 µmol/kg), which is a function of the high degree of Si utilization by diatoms and admixture with waters from highly productive areas. Samples within the upper water column and the OMZ at oxygen concentrations below 10 µmol/kg are characterized by a large range in d30Si(OH)4, which mainly reflects advection and mixing of different water masses, even though the highly dynamic hydrographic system of the upwelling area off Peru does not allow the identification of clear Si isotope signals for distinct water masses. Therefore we cannot rule out that also dissolution processes have an influence on the d30Si(OH)4 signature in the subsurface water column. Deep water masses (>2000 m) in the study area show a mean d30Si(OH)4 of +1.2±0.2 per mil, which is in agreement with previous studies from the eastern and central Pacific. Comparison of the new deep water data of this study and previously published data from the central Pacific and Southern Ocean reveal substantially higher d30Si(OH)4 values than deep water signatures from the North Pacific. As there is no clear correlation between d30Si(OH)4 and silicic acid concentrations in the entire data set the distribution of d30Si(OH)4 signatures in deep waters of the Pacific is considered to be mainly a consequence of the mixing of several end member water masses with distinct Si isotope signatures including Lower Circumpolar Deep Water (LCDW) and North Pacific Deep Water (NPDW).
Resumo:
Past hydrological changes in Africa have been linked to various climatic processes, depending on region and timescale. Long-term precipitation changes in the regions of northern and southern Africa influenced by the monsoons are thought to have been governed by precessional variations in summer insolation (Kutzbach and Liu, 1997, doi:10.1126/science.278.5337.440; Partridge et al., 1997, doi:10.1016/S0277-3791(97)00005-X). Conversely, short-term precipitation changes in the northern African tropics have been linked to North Atlantic sea surface temperature anomalies, affecting the northward extension of the Intertropical Convergence Zone and its associated rainbelt (Hastenrath, 1990, doi:10.1002/joc.3370100504, Street-Perrott and Perrott, 1990, doi:10.1038/343607a0). Our knowledge of large-scale hydrological changes in equatorial Africa and their forcing factors is, however, limited (Gasse, 2000, doi:10.1016/S0277-3791(99)00061-X). Here we analyse the isotopic composition of terrigenous plant lipids, extracted from a marine sediment core close to the Congo River mouth, in order to reconstruct past central African rainfall variations and compare this record to sea surface temperature changes in the South Atlantic Ocean. We find that central African precipitation during the past 20,000 years was mainly controlled by the difference in sea surface temperatures between the tropics and subtropics of the South Atlantic Ocean, whereas we find no evidence that changes in the position of the Intertropical Convergence Zone had a significant influence on the overall moisture availability in central Africa. We conclude that changes in ocean circulation, and hence sea surface temperature patterns, were important in modulating atmospheric moisture transport onto the central African continent.
Resumo:
In large areas of the world's oceans, there is a relationship between the mass flux of particulate matter and the unsupported 231Pa/230Th (xs231Pa/xs230Th) activity ratio of recent sediments. This observation forms the basis for using the xs231Pa/xs230Th ratio as a proxy for past changes in export productivity. However, a simple relationship between xs231Pa/xs 230Th ratio and particle flux requires that the water residence time in an ocean basin is far in excess of the scavenging residence time of 231Pa, and that the composition of sinking particles maintains a strong preference for the adsorption of 230Th over 231Pa with a constant 230Th/231Pa fractionation factor (F). The best correlation between xs231Pa/xs230Th ratio and mass flux is found in the Pacific Ocean. In the Atlantic, the contrast in the xs231Pa/xs230Th ratios between open ocean (low flux regions) and ocean margins (high flux regions) is much less pronounced due to the shorter residence time of deep water, resulting in less effective boundary scavenging of 231Pa. In the Southern Ocean, south of the Polar Front, there is no more a simple relationship between xs231Pa/xs230Th and particle flux. This is a result of a southward decrease in F, probably reflecting the increased opal content of sinking particles. Opal does not fractionate 231Pa and 230Th significantly. This lack of fractionation results in high xs231Pa/xs230Th ratios in opal-dominated regions, even in areas of very low particle fluxes such as the Weddell Sea. The xs231Pa/xs230Th ratio can therefore only be used as a paleoproductivity proxy if, in the time interval of interest, changes in the basin ventilation rate and differential scavenging of both radionuclides due to changes in the chemical composition of particulate matter can be excluded.
Resumo:
Abundance and size distribution of ctenophore Mnemiopsis leidyi in different parts of the Caspian Sea were studied in summer 2001 in relation to environmental conditions. In general, principal differences were found in M. leidyi abundance and population reproduction activity in northern-, middle- and southern Caspian waters. Ctenophore was practically absent in the northern Caspian. In the west of the middle Caspian Sea it penetrated far to the north demonstrating low reproduction activity. In the east the first single comb jellies were pointed out only in the most south of the region. In the warmest and most productive southern part of the Caspian Sea several zones of M. leidyi active breeding were found with total abundance exceeding 6000 #/m**2. Breeding activity and abundance of ctenophores increased here from the east to the west exceeding maximum values along the western coast of the southern Caspian Sea in regions of intensive sprat catching. Dependence of M. leidyi population development on temperature conditions was mentioned. On the base of remote sensed surface temperature, chlorophyll, and suspended mater distribution analysis possible ctenophore settling mechanisms by mesoscale dynamic structures were examined. Practical applications of obtained results are discussed for using effective biological methods to prevent catastrophic consequences of M. leidyi invasion to the Caspian Sea.
Resumo:
Geological features of some areas of the Tropical Atlantic (stratigraphy, tectonic structure, lithology, distribution of ore components in bottom sediments, petrography of bedrocks, etc.) are under consideration in the book. Regularities of concentration of trace elements in iron-manganese nodules, features of these nodules in bottom sediments, distribution of phosphorite nodules and other phosphorites have been studied. Much attention is paid to rocks of the ocean crust. A wide range of mineralization represented by magnetite, chromite, chalcopyrite, pyrite, pentlandite, and other minerals has been found.
Resumo:
A sediment core from the western tropical Atlantic covering the last 21,000 yr has been analysed for centennial scale reconstruction of sea surface temperature (SST) and ice volume-corrected oxygen isotopic composition of sea water (delta18O(ivc-sw)) using Mg / Ca and delta18O of the shallow dwelling planktonic foraminifer Globigerinoides ruber (white). At a period between 15.5 and 17.5 kyr BP, the Mg / Ca SST and delta18O(ivc-sw), a proxy for sea surface salinity (SSS), reveals a warming of around 2.5 °C along with an increase in salinity. A second period of pronounced warming and SSS increase occurred between 11.6 and 13.5 kyr BP. Within age model uncertainties, both warming intervals were synchronous with air temperature increase over Antarctica and ice retreat in the southern South Atlantic and terminated with abrupt centennial scale SSS decrease and slight SST cooling in conjunction with interglacial reactivation of the meridional overturning circulation (MOC). We suggest that during these warm intervals, production of saline and warm water of the North Brazil Current resulted in pronounced heat and salt accumulation, and was associated with warming in the southern Atlantic, southward displacement of the intertropical convergence zone and weakened MOC. At the termination of the Younger Dryas and Heinrich event 1, intensification of cross-equatorial heat and salt transport caused centennial scale cooling and freshening of the western tropical Atlantic surface water. This study shows that the western tropical Atlantic served as a heat and salt reservoir during deglaciation. The sudden release of accumulated heat and salt at the end of Younger Drays and Heinrich event 1 may have contributed to the rapid reinvigoration of the Atlantic MOC.
Resumo:
Ocean acidification is considered a major threat to marine ecosystems and may particularly affect primary producers. Here we investigated the impact of elevated pCO2 on paralytic shellfish poisoning toxin (PST) content and composition in two strains of Alexandrium tamarense, Alex5 and Alex2. Experiments were carried out as dilute batch to keep carbonate chemistry unaltered over time. We observed only minor changes with respect to growth and elemental composition in response to elevated pCO2. For both strains, the cellular PST content, and in particular the associated cellular toxicity, was lower in the high CO2 treatments. In addition, Alex5 showed a shift in its PST composition from a nonsulfated analogue towards less toxic sulfated analogues with increasing pCO2. Transcriptomic analyses suggest that the ability of A. tamarense to maintain cellular homeostasis is predominantly regulated on the post-translational level rather than on the transcriptomic level. Furthermore, genes associated to secondary metabolite and amino acid metabolism in Alex5 were down-regulated in the high CO2 treatment, which may explain the lower PST content. Elevated pCO2 also induced up-regulation of a putative sulfotransferase sxtN homologue and a substantial down-regulation of several sulfatases. Such changes in sulfur metabolism may explain the shift in PST composition towards more sulfated analogues. All in all, our results indicate that elevated pCO2 will have minor consequences for growth and elemental composition, but may potentially reduce the cellular toxicity of A. tamarense.
Resumo:
Ocean Drilling Program (ODP) Site 1151 (Sacks, Suyehiro, Acton, et al., 2000, doi:10.2973/odp.proc.ir.186.2000) is located in an area where the surface water mass is influenced by both the Kuroshio and Oyashio Currents. The site also receives a relatively high flux of detrital materials from riverine input from Honsyu Island and eolian input from Central and East Asia. We analyzed alkenones and alkenoates in the sediments to reconstruct alkenone unsaturation index (Uk'37)-based sea-surface temperature (SST), total organic carbon, and total nitrogen to estimate the terrigenous contribution by the C/N ratio during the last glacial-interglacial cycle. The major elements were also analyzed to examine the variation in terrigenous composition.
Resumo:
The dissolution of CaCO3 is one of the ways ocean acidification can, potentially, greatly affect the ballast of aggregates. A diminution of the ballast could reduce the settling speed of aggregates, resulting in a change in the carbon flux to the deep sea. This would mean lower amounts of more refractory organic matter reaching the ocean floor. This work aimed to determine the effect of ocean acidification on the ballast of sinking surface aggregates. Our hypothesis was that the decrease of pH will increase the dissolution of particulate inorganic carbon ballasting the aggregates, consequently reducing their settling velocity and increasing their residence time in the upper twilight zone. Using a new methodology for simulation of aggregate settling, our results suggest that future pCO2 conditions can significantly change the ballast composition of sinking aggregates. The change in aggregate composition had an effect on the size distribution of the aggregates, with a shift to smaller aggregates. A change also occurred in the settling velocity of the particles, which would lead to a higher residence time in the water column, where they could be continuously degraded. In the environment, such an effect would result in a reduction of the carbon flux to the deep-sea. This reduction would impact those benthic communities, which rely on the vertical flow of carbon as primary source of energy.
Resumo:
In order to document changes in Holocene glacier extent and activity in NE Greenland (~73° N) we study marine sediment records that extend from the fjords (PS2631 and PS2640), across the shelf (PS2623 and PS2641), to the Greenland Sea (JM07-174GC). The primary bedrock geology of the source areas is the Caledonian sediment outcrop, including Devonian red beds, plus early Neoproterozoic gneisses and early Tertiary volcanics. We examine the variations in colour (CIE*), grain size, and bulk mineralogy (from X-ray diffraction of the <2 mm sediment fraction). Fjord core PS2640 in Sofia Sund, with a marked red hue, is distinct in grain size, colour and mineralogy from the other fjord and shelf cores. Five distinct grain-size modes are distinguished of which only one is associated with a coarse ice-rafting signal - this mode is rare in the mid- and late Holocene. A sediment unmixing program (SedUnMixMC) is used to characterize down-core changes in sediment composition based on the upper late Holocene sediments from cores PS2640 (Sofia Sund), PS2631 (Kaiser Franz Joseph Fjord) and PS2623 (south of Shannon Is), and surface samples from the Kara Sea (as an indicator of transport from the Russian Arctic shelves). Major changes in mineral composition are noted in all cores with possible coeval shifts centred c. 2.5, 4.5 and 7.5 cal. ka BP (±0.5 ka) but are rarely linked with changes in the grain-size spectra. Coarse IRD (>2 mm) and IRD-grain-size spectra are rare in the last 9-10 cal. ka BP and, in contrast with areas farther south (~68° N), there is no distinct IRD signal at the onset of neoglaciation. Our paper demonstrates the importance of the quantitative analysis of sediment properties in clarifying source to sink changes in glacial marine environments.
Resumo:
Despite the fact that plankton plays an important role in biogeochemical processes in oceans, data on its elemental composition, particularly in shelf seas of the Arctic Ocean, have thus far been insufficient. This communication, which is devoted to a comparative analysis of the elemental composition of plankton and bottom sediments in the White Sea, is part of the comprehensive investigation of the region that is occurring in line with the International Project ''Land-Ocean Interaction in the Russian Arctic'' (LOIRA).