969 resultados para subsurface pipes
Resumo:
The Permo-Carboniferous Harare Group crops out in the Matra area, represented by Campo do Tenente, Mafra and Rio do Sul formations; they correspond in subsurface to Lagoa Azul, Campo Mourão and Tacïba formations. A composite sampling of the Group was performed through drilling of six wells, which average 60 m in depth; three of them cored the depositional sequence here designated as Upper Mafra\Lower Rio do Sul. The Upper Mafra Formation were sampled by TC-4 and BR-5 wells, and it consists of three units: the lower two are sandy, glacial-deltaic and fluvial-deltaic in origin, corresponding to a lowstand tract. The last unit is composed of two dirtying-upward successions of sandstone, diamictite and rhythmite, interpreted as deglaciation/transgressive events, and well represented in BR-5 drilling. The Lower-Rio do Sul Formation (Lontras Shale) is formed by two marine units: the lower one is represented by shale and bioturbated siltstone which culminate the previous deglaciation, transgressive succession, while the upper one, sampled by SL-2 well, is formed by shale and thin, turbidite sandstone, attributed to a highstand tract.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Root volume and dry matter of peanut plants as a function of soil bulk density and soil water stress
Resumo:
Soil compaction may be defined as the pressing of soil to make it denser. Soil compaction makes the soil denser, decreases permeability of gas and water exchange as well as alterations in thermal relations, and increases mechanical strength of the soil. Compacted soil can restrict normal root development. Simulations of the root restricting layers in a greenhouse are necessary to develop a mechanism to alleviate soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. This experiment aimed to assess peanut (Arachis hypogea) root volume and root dry matter as a function of bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6g cm-3), and two levels of the soil water content (70 and 90% of field capacity) were used. Treatments were arranged as completely randomized design, with four replications in a 3×2 factorial scheme. The result showed that peanut yield generally responded favorably to subsurface compaction in the presence of high mechanical impedance. This clearly indicates the ability of this root to penetrate the hardpan with less stress. Root volume was not affected by increase in soil bulk density and this mechanical impedance increased root volume when roots penetrated the barrier with less energy. Root growth below the compacted layer (hardpan), was impaired by the imposed barrier. This stress made it impossible for roots to grow well even in the presence of optimum soil water content. Generally soil water content of 70% field capacity (P<0.0001) enhanced greater root proliferation. Nonetheless, soil water content of 90% field capacity in some occasions proved better for root growth. Some of the discrepancies observed were that mechanical impedance is not a good indicator for measuring root growth restriction in greenhouse. Future research can be done using more levels of water to determine the lowest soil water level, which can inhibit plant growth.
Resumo:
The need for a rational use of water and supply of food for a growing world population have led to the development of research in the area of irrigation systems. Thus, some irrigation systems which join efficiency with low cost of material have been developed. Although some technical characteristics are provided by the manufacturers, tests are required to verify functioning of the system and uniformity of water distribution. Continuous research on uniformity, characteristics of the materials and design of water distribution systems is essential for system improvement. Therefore, the objective of this work was to evaluate the CV (manufacturer's coefficient of variation) of Amanco microsprinkler (1.0 mm light green nipple) using bench testing in the laboratory of Irrigation at UNESP - FCA campus of Botucatu-SP. Twenty-five microsprinklers in a sequential design were used in the tests. Three flow systems were tested as follows: a Coil system based on serial connected pipes; a Lateral system, the most common system in which secondary lines are fed by a main line; and a Mesh system used in the urban water supply. The results showed that 4.17% CVf met the production standards and the Lateral and Mesh systems were similar regarding outflow using bench testing. The Mesh system presented the highest mean value of outflow and the lowest range of variation.
Resumo:
Conventional radiography, using industrial radiographic films, has its days numbered. Digital radiography, recently, has taken its place in various segments of products and services, such as medicine, aerospace, security, automotive, etc. As well as the technological trend, the digital technique has brought proven benefits in terms of productivity, sensitivity, the environment, tools for image treatment, cost reductions, etc. If the weld to be inspected is on a serried product, such as, for example, a pipe, the best option for the use of digital radiography is the plane detector, since its use can reduce the length of the inspection cycle due to its high degree of automation. This work tested welded joints produced with the submerged arc process, which were specially prepared in such a way that it shows small artificial cracks, which served as the basis forcomparing the sensitivity levels of the techniques involved. After carrying out the various experiments, the digital meth odshowed the highest sensitivity for the image quality indicator (IQI) of the wire and also in terms of detecting small discontinuities, indicating that the use of digital radiography using the plane detector had advantages over the conventional technique (Moreira et al. Digital radiography, the use of plane detectors for the inspection of welds in oil pipes and gas pipes.9th COTEQ and XXV National Testing Congress for Non Destructive Testing and Inspection; Salvador, Bahia, Brazil and Bavendiek et al. New digital radiography procedure exceeds film sensitivity considerably in aerospace applications. ECNDT; 2006; Berlin). The works were carried out on the basis of the specifications for oil and gas pipelines, API 5L 2004 edition (American Petroleum Institute. API 5L: specification for line pipe. 4th ed. p. 155; 2004) and ISO 3183 2007 edition (International Organization for Standardization, ISO 3183. Petroleum and gas industries - steel pipes for pi pelines transportation systems. p. 143; 2007). © 2010 Taylor & Francis.
Resumo:
This study aimed to evaluate the acclimatization effects in the Eucalyptus grandis vs. Eucalyptus urophylla seedlings nursery in their initial growth in two soils types, clay and sandy. The seedlings were planted in Plantmax substrate and in rice hulls plus vermiculite, and managed, after 60 days of the mass propagation (DAE), during the rustication. There were five different frequencies of subsurface drip irrigation, restoring the soil field capacity condition: F1, F2, F3 and F4, which were irrigated once, twice, three and four times a day, respectively, and FD, kept in continue irrigation until planting at 90 DAE. In a randomized block design with four replications, plant height (HPA) were evaluated at 6 and 13 months after planting and the diameter at breast height (DAP) at 13 months after planting. Findings show that water management at hardening phase seedlings had no influence on growth in both soils.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A major UK initiative, entitled 'Mapping the Underworld', is seeking to address the serious social, environmental and economic consequences arising from an inability to locate accurately and comprehensively the buried utility service infrastructure without resorting to extensive excavations. Mapping the Underworld aims to develop and prove the efficacy of a multi-sensor device for accurate remote buried utility service detection, location and, where possible, identification. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics, and application of this technique for detecting buried infrastructure is currently being investigated. Here, the potential for making a number of simple point vibration measurements in order to detect shallow-buried objects, in particular plastic pipes, is explored. Point measurements can be made relatively quickly without the need for arrays of surface sensors, which can be expensive, time-consuming to deploy, and sometimes impractical in congested areas. At low frequencies, the ground behaves as a simple single-degree-of-freedom (mass-spring) system with a well-defined resonance, the frequency of which will depend on the density and elastic properties of the soil locally. This resonance will be altered by the presence of a buried object whose properties differ from the surrounding soil. It is this behavior which can be exploited in order to detect the presence of a buried object, provided it is buried at a sufficiently shallow depth. The theoretical background is described and preliminary measurements are made both on a dedicated buried pipe rig and on the ground over a domestic waste pipe. Preliminary findings suggest that, for shallow-buried pipes, a measurement of this kind could be a quick and useful adjunct to more conventional methods of buried pipe detection. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Soil attributes reflect influence of the geomorphic surfaces. Therefore, the objective of this work was to investigate the influence of the geomorphic surfaces on soil attributes in a topossequence from low lands to high lands in the Humaitá region, AM. A transect of 4.5 km, from the top of the slope towards the low lands was established and the geomorphic surfaces were identified and limited according to topographic and estratigraphic criteria, based on detailed field investigation. Twenty soil samples were collected in each one of the slope segments within the geomorphic surfaces (G.S.), at the following depths: G.S. I: LAa (0.0-0.16 and 0.48-0.79 m); G.S. II: Lad1 (0.0-0.13 and 0.44-0.70) and Lad2 (0.0-0.10 and 0.30-0.55 m); G.S. III: RYve1 (0.0-0.18 and 0.51-0.89) and RYve2 (0.0-0.23 and 0.58-0.91 m). The sampling depths were determined by the surface and subsurface horizon depths, defined during the soil morphological description. Physical analysis involved particle size distribution, disperse clay, soil and particle density and total porosity. The chemical analysis involved determinations of pH in water and KCl, exchangeable cations, exchangeable Al, total acidity (H+Al), available P, organic carbon. The relief variations contributed to the presence of dystrophic soils in the geomorphic surface I and eutrophic soils in the geomorphic surface III. The multivariate statistical techniques were able to separate three heterogeneous groups, equivalent to the mapped geomorphic surfaces.
Resumo:
We theoretically investigate the local density of states (LDOS) probed by an STM tip of ferromagnetic metals hosting a single adatom and a subsurface impurity. We model the system via the two-impurity Anderson Hamiltonian. By using the equation of motion with the relevant Green's functions, we derive analytical expressions for the LDOS of two host types: a surface and a quantum wire. The LDOS reveals Friedel-like oscillations and Fano interference as a function of the STM tip position. These oscillations strongly depend on the host dimension. Interestingly, we find that the spin-dependent Fermi wave numbers of the hosts give rise to spin-polarized quantum beats in the LDOS. Although the LDOS for the metallic surface shows a damped beating pattern, it exhibits the opposite behavior in the quantum wire. Due to this absence of damping, the wire operates as a spatially resolved spin filter with a high efficiency. © 2013 American Physical Society.
Resumo:
International Journal of Paediatric Dentistry 2013; 23: 166-172 Objective. Our in vitro study evaluated calcium fluoride formation in enamel and the anticaries effect of seven resin-based varnishes under cariogenic challenge. Methods. Enamel blocks were subjected to pH cycling. The experimental groups received fluoride varnish application, the positive control received topical fluoride gel treatment, and the negative control did not receive any treatment. The pH cycling surface hardness (SH1) and integrated loss of subsurface hardness (ΔKHN) were then determined. We measured the amount of fluoride released into the demineralizing and remineralizing (DE-RE) solutions used in pH cycling. The fluoride concentration in the enamel was determined 24h after application of the products as loosely bound fluoride and firmly bound fluoride. Results. Higher deposits of loosely bound fluoride were observed for Duofluorid, followed by Biophat. For Duraphat, Bifluorid, Duraflur, and Duofluorid, no difference was observed in the SH1 and ΔKHN values, with the lowest mineral loss compared to the other groups. The Bifluorid and Duofluorid groups released high fluoride amounts into the DE-RE, and statistically significant difference was noted between them. Conclusions. The anticaries effect showed no correlation with higher deposited fluoride amounts, resin type, or fluoride source. © 2012 John Wiley & Sons Ltd, BSPD and IAPD.
Resumo:
This study evaluated the capacity of fluoride acidic dentifrices (pH 4.5) to promote enamel remineralization using a pH cycling model, comparing them with a standard dentifrice (1,100 μgF/g). Enamel blocks had their surface polished and surface hardness determined (SH). Next, they were submitted to subsurface enamel demineralization and to postdemineralization surface hardness analysis. The blocks were divided into 6 experimental groups (n=10): placebo (without F, pH 4.5, negative control), 275, 412, 550, 1,100 μgF/g and a standard dentifrice (positive control). The blocks were submitted to pH cycling for 6 days and treatment with dentifrice slurries twice a day. After pH cycling, surface and crosssectional hardness were assessed to obtain the percentage of surface hardness recovery (%SHR) and the integrated loss of subsurface hardness (δKHN). The results showed that %SHR was similar among acidic dentifrices with 412, 550, 1,100 μgF/g and to the positive control (Tukey's test; p>0.05). For ΔKHN, the acidic dentifrice with 550 μg F/g showed a better performance when compared with the positive control. It can be concluded that acidic dentifrice 550 μgF/g had similar remineralization capacity to that of positive control.
Resumo:
In sprinkler irrigation is important to have a good uniformity of application so that the water in the root zone does not show areas with little available water while others have percolating beyond the plant roots, even though the soil allows a lateral redistribution of water. A usual way to obtain the uniformity of irrigation is by measures of dispersion. The aim of this work was to evaluate the uniformity of water stored in a sand soil before and after non uniformity depth irrigation applied from one sprinkler, as well the variation of storage in a 0-0,45 m layer soil using a neutron probe. The statistical design was completely randomized, and for the variable Christiansen uniformity coefficient modified (CUCHH) were 10 treatments (the irrigation depth, 8 intervals of readings storage, more the existing one before irrigation added to the irrigation depth). For the variable soil water, the treatments were the same, excepting the irrigation depth. Despite the low surface uniformity (16.3%), there was not significantly difference between the storage uniformity before, after irrigation and the potential, however there was from these to the surface uniformity. From de irrigation depth, 15.3 mm, only 6.1 mm remained in the layer from 0 to 0.45 m. There was not significantly difference between the water stored in the soil before and after irrigation within a period of up to 134 hours, being the increase in storage due to irrigation was just 11.7%.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A study was made of the composition of wastes collected from the pipes of the stormwater drainage system of Sorocaba, SP, Brazil (600 thousand inhabitants). A total of 10 samples weighing at least 100 kg each were sorted into 19 items to determine the fraction that can be considered natural (earth/sand, stones, organic matter, and water, the latter determined after oven-drying the samples) and the anthropogenic fraction (the remaining 15 items, especially construction and demolition wastes and packaging). Soil/sand was found to be the main item collected (52.5 % dry weight), followed by the water soaked into the waste (24.3 %), which meant that all the other wastes were saturated in mud, whose contents varied from 6.4 % (glass) to 87.2 % (metalized plastics packaging). In general, 83 % of the collected wastes can be classified as natural, but the remaining 17 % represent 2,000 kg of the most varied types of wastes discarded improperly every day on the streets of the city. This is an alarming amount of wastes that may clog parts of the drainage systems, causing troubles for all the population (like flooding) and must be strongly considered in municipal solid wastes management and in environmental education programs. © 2013 Springer Science+Business Media Dordrecht.