936 resultados para stannous fluoride
Resumo:
The high-resolution emission spectra of KMgF3 : Eu and KMgF3 : Eu-X(X = Ce, Cr, Gd, Cu) single crystals were measured at 300 and 77 K. The vibronic side bands of Eu2+ were characterized and an assignment of the normal mode frequencies to particular vibrations has been made. The correlation between the vibronic frequencies of Eu2+ and the site substitution of other co-dopcd ions was first found. The relationship between vibronic intensity of Eu2+ and other doped ions concentration showed that Cr3+, Gd3+ ions competed K+ sites with Eu2+ ions. Ce3+ and Eu3+ occurred the electron transference. The introduction of Cu+ made for Eu2+ substuting for K+ sites.
Resumo:
Poly(vinyl acetate-co-vinyl alcohol) copolymers (P(VAc-co-VA)) were synthesized by hydrolysis-alcoholysis of PVAc. The miscibility, crystallization, and morphology of poly(P-hydroxybutyrate) (PHB) and P(VAc-co-VA) blends were studied by differential scanning calorimetry, optical microscopy (OM), and SAXS. It is found that the P(VAc-co-VA)s with vinyl alcohol content of 9, 15, and 22 mol % will form a miscible phase with the amorphous part of PHB in the solution-cast samples. The melting-quenched samples of PHB/P(VAc-co-VA) blends with different vinyl alcohol content show different phase behavior. PHB and P(VAc-co-VA9) with low vinyl alcohol content (9% mel) will form a miscible blend in the melt state. PHB and P(VAc-co-VA15) with 15 mol % vinyl alcohol will not form miscible blends while PHB/P(VAc-co-VA15) blend with 20/80 composition will form a partially miscible blend in the melt state. PHB and P(VAc-co-VA22) with 22 mol % vinyl alcohol are not miscible in the whole composition range. The single glass transition temperature of the blends within the whole composition range suggests that PHB and P(VAc-co-VA9) are totally miscible in the melt. The crystallization kinetics was studied from the whole crystallization and spherulite growth for the miscible blends. The equilibrium melting point of PHB in the PHB/P(VAc-co-VA9) blends, which was obtained from DSC results using the Hoffman-Weeks equation, decreases with the increase in P(VAc-co-VA9) content. The negative value of the interaction parameter determined from the equilibrium melting point depression supports the miscibility between the components. The kinetics of spherulitic crystallization of PHB in the blends was analyzed according to nucleation theory in the temperature range studied in this work. The best fit of the data to the kinetic theory is obtained by employing WLF parameters and the equilibrium melting points obtained by DSC. The addition of P(VAc-co-VA) did not affect the crystalline structure of PHB, as shown by the WAXD results. The long periods of blends obtained from SAXS increase with the increase in P(VAc-co-VA) content. It indicates that the amorphous P(VAc-co-VA) was rejected to interlamellar phase corporating with the amorphous part of PHB.
Resumo:
The membranes of polyvinylidene fluoride, which were synthesized by our laboratory, were used to study the transfer and extraction performances of Nd(III) and Sm(III) with the extraction system of HEH/EHP-kerosene. The results show that the membrane material was suitable to the study on membrane extraction, and could offer a good transfer performance in the membrane construction parameters selected, The extraction reaction in the membrane module was the same as that in liquid-liquid process, HEH/EHP ammoniated for increasing the mass transfer coefficient was almost the same with increasing the concentration of HEH/EHP, and H+ was still transferred first at higher pH range of feed solution when HEH/EHP was ammoniated, The controlling model of the membrane extraction process was the diffusion model accompanied by interfacial reaction, The controlling function of interfacial reaction would increase gradually with the increasing of the membrane pore size. The mass transfer coefficient increased when extraction and stripping were carried out simultaneously.
Resumo:
Isothermal crystallization kinetics in the miscible mixtures of poly(epsilon-caprolactone) (PCL) and poly(styrene-co-acrylonitrile) (SAN) have been investigated as a function of the composition and the crystallization temperature by optical microscopy. The radial growth rates of the spherulites have been described by a kinetic equation including the interaction parameter and the free energy for the formation of secondary crystal nuclei. Fold surface free energies decrease slightly with the increase of SAN content. The experimental findings show that the influence of the glass transition temperature of the mixture, which is related to the chain mobility, on the rate of crystallization predominates over the influence of the surface free energies. This indicates that the glass transition temperature of the mixture should be of more importance, so that the growth rates decrease when the content of the noncrystallizable component increases. In addition, the Flory-Huggins interaction parameter obtained by fitting the kinetic equation with experimental data is questionable.
Resumo:
An effort has been made to modify the mechanical behaviour of our previously reported gel-type gamma-radiation crosslinked polyethylene oxide (PEO)-LiClO4 polymer electrolyte. A highly polar and gamma-radiation crosslinkable crystalline polymer, polyvinylidene fluoride (PVDF), was selected to blend with PEO and then subjected to gamma-irradiation in order to make an simultaneous interpenetrating network (SIN), which was used as a polymer host to impart stiffness to the plasticized system. Experimental results have shown that the presence of PVDF in the system, through gamma-radiation induced SIN formation, could not only give a rather high mechanical modulus of 10(7) Pa at ambient temperature, but also maintain the room temperature ionic conductivity at a high level (greater than 10(-4) S/cm). DSC, DMA and conductivity measurement techniques were used to examine the effects of blending, gamma-irradiation and plasticization on the variations of glass transition and melting endotherm, on the appearance of high elastic plateau and on the temperature dependence of ionic conductivity: In addition, it was found that, in contrast with the unplasticized system, the ionic conductivity mechanism of this gel-type electrolyte seems to conform to the Arrhenius model, suggesting that, as a result of the high degree of plasticization, the polymer chains act mainly as the skeleton of the networks or polymer cages to immobilize the liquid electrolyte solution, whereas the ionic species migrate as if they were in a liquid medium. (C) 1997 Elsevier Science Ltd.
Resumo:
The miscibility and crystallization behavior of poly(beta-hydroxybutyrate) (PHB) and poly(p-vinylphenol) (PVPh) blends were studied by differential scanning calorimetry and optical microscopy (OM). The blends exhibit a single composition-dependent glass transition temperature, characteristic of miscible systems, A depression of the equilibrium melting temperature of PHB is observed. The interaction parameter values obtained from analysis of the melting point depression are of large negative values, which suggests that PHB and PVPh blends are thermodynamically miscible in the melt. Isothermal crystallization kinetics in the miscible blend system PHB/PVPh was examined by OM. The presence of the amorphous PVPh component results in a reduction in the rate of spherulite growth of PHB. The spherulite growth rate is analyzed using the Lauritzen-Hoffman model, The isothermally crystallized blends of PHB/PVPh were examined by wide-angle X-ray diffraction and smell-angle X-ray scattering (SAXS). The long period obtained from SAXS increases with the increase in PVPh component, which implies that the amorphous PVPh is squeezed into the interlamallar region of PHB.
Resumo:
A series of liquid crystalline copolymers, poly{2-hydroxyethyl methacrylate}-co-{6-[4-(S-2-methyl-1-butyloxycarbonylphenylazo)phenoxy]hexyl methacrylate} with an azobenzene moiety as photoreactive mesogenic unit, was prepared and investigated by using DSC, polarized optical microscopy and X-ray diffraction. The results show that these polymers exhibit smectic phases. Z-type Langmuir-Blodgett films of these copolymers were successfully deposited onto calcium fluoride and quartz. Reversible homeotropic and planar liquid crystal alignments were induced by using the photochromism of the LB films of one of the copolymers containing 20.6 mol % of the azo unit.
Resumo:
Gel electrolytes have been prepared by thermal polymerization of poly(polyethylene glycol dimethacrylate) (P(PEGD)) in the presence of propylene carbonate (PC) and alkali metal salts, such as LiClO4, LICF(3)SO(3) and LiBF4. The conductivity was studied by means of impedance spectroscopy, and it is found that the temperature dependence of conductivities follow a Arrhenius relationship when the molar percentage of PC is higher than 75% or LiClO4 concentration is lower than 0.9 mol/l. However, when LiCF3SO3 or LiBF4 is used instead of LiClO4 as the salt, the situation is different. For LICF(3)SO(3), the Arrhenius relationship almost holds true for all the salt concentrations studied; while for LiBF4, the Arrhenius equation hardly fits for any salt concentration. The dependence of activation energy on salt concentration is also examined, both for LiClO4 and LiCF3SO3, the values of E(a) tend to reach a minimum value with increasing salt concentration. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
In order to characterize the interface in polymer blends, a new method is suggested, in which the interface is exposed by selectively dissolving in solvent. By means of X-ray photoelectron spectrometry, we studied the molecular state in the interfacial ar
Resumo:
Influence of ester group size in polymethacrylates (PMAs) , including PMMA, PEMA and PBMA, on beta phase crystallization of poly(vinylidene fluoride) (PVF2) in highly oriented films of PVF2/PMAs=80/20 blends has been investigated by FTIR and TEM. The melt-drawn films of pure PVF2 consist of highly oriented lamellae, in which the alpha phase is predominant. Adding a given amount of PMAs (20 wt%) into PVF2 results in formation of fibrillar crystals and increase of relative amount of the beta phase. The influence extent is in order of PMMA > PEMA > PBMA, regarding the ester group size in the PMAs.
Resumo:
Blends of poly(N-vinyl-2-pyrrolidone) (PVP) with poly(ether sulphone) and two phenolphthalein-based polymers, viz. phenolphthalein poly(ether ether sulphone) and phenolphthalein poly(ether ether ketone) were prepared by casting from a common solvent and studied by differential scanning calorimetry. It was found that all the PVP blends are miscible and show a single, composition-dependent glass transition temperature (T(g)). The T(g)-composition dependence has been analysed by the use of the Gordon-Taylor equation. The values of the k parameter in the Gordon-Taylor equation obtained are all not high for the three pairs, in accordance with the fact that there is no strongly specific interaction between PVP and any of the other polymers.
Resumo:
Blends of poly(N-vinyl-2-pyrrolidone) (PVP) with a copolyamide (CoPA) randomly composed of 1:1:1 (wt) nylon 6, nylon 66 and nylon 610 structural units were prepared by casting from a common solvent. They were found to be miscible and show a single, composition-dependent glass transition temperature (T(g)). The addition of PVP to CoPA significantly lowers the crystallinity owing to an increasing T(g) of the system. The observed miscibility is proposed to be the result of specific interactions between the proton acceptor groups of PVP and the amide groups of CoPA.
Resumo:
The crystallization and melting behaviour of poly(aryl-ether-ether-ketone) (PEEK) in blends with another polymer of the same family containing a bulky pendant phenolphthalein group (PEK-C) have been investigated by thermal methods. The small interaction energy density of the polymer pair (B = -8.99 J/cm3), evaluated from equilibrium melting point depression, is consistent with the T(g) data that indicate partial miscibility in the melt. Two conjugated phases are in equilibrium at 430-degrees-C: one is crystallizable and contains about 35 wt% of PEK-C; the other, containing only 15 wt% of PEEK, does not form crystals upon cooling and it interferes with the development of spherulites in the sample. The analysis of kinetic data according to nucleation theories shows that crystallization of PEEK in the explored temperature range takes place in Regime III and that a transition to Regime II might be a consequence of an increase in the amount of non-crystallizable molecules in the PEEK-rich phase. A composition independent value of the end surface free energy of PEEK lamellae has been derived from kinetic data (sigma-e = 40 +/- 4 erg/cm2) in excellent agreement with previous thermodynamic estimates. A new value for the equilibrium melting temperature of PEEK (T(m)-degrees = 639 K) has been obtained; it is about 30-degrees-C lower than the commonly accepted value and it explains better the "memory effect" in the crystallization from the melt of this high performance polymer.