974 resultados para stages of anesthesia
Resumo:
The cytosolic chaperonin CCT is a heterooligomeric complex of about 900 kDa that mediates the folding of cytoskeletal proteins. We observed by indirect immunofluorescence that the Tetrahymena TpCCTalpha, TpCCTdelta, TpCCTepsilon, and TpCCTeta-subunits colocalize with tubulin in cilia, basal bodies, oral apparatus, and contractile vacuole pores. TpCCT-subunits localization was affected during reciliation. These findings combined with atomic force microscopy measurements in reciliating cells indicate that these proteins play a role during cilia biogenesis related to microtubule nucleation, tubulin transport, and/or axoneme assembly. The TpCCT-subunits were also found to be associated with cortex and cytoplasmic microtubules suggesting that they can act as microtubule-associated proteins. The TpCCTdelta being the only subunit found associated with the macronuclear envelope indicates that it has functions outside of the 900 kDa complex. Tetrahymena cytoplasm contains granular/globular-structures of TpCCT-subunits in close association with microtubule arrays. Studies of reciliation and with cycloheximide suggest that these structures may be sites of translation and folding. Combined biochemical techniques revealed that reciliation affects the oligomeric state of TpCCT-subunits being tubulin preferentially associated with smaller CCT oligomeric species in early stages of reciliation. Collectively, these findings indicate that the oligomeric state of CCT-subunits reflects the translation capacity of the cell and microtubules integrity.
Resumo:
II European Conference on Curriculum Studies. "Curriculum studies: Policies, perspectives and practices”. Porto, FPCEUP, October 16th - 17th.
Resumo:
Nanotechnology is an important emerging industry with a projected annual market of around one trillion dollars by 2015. It involves the control of atoms and molecules to create new materials with a variety of useful functions. Although there are advantages on the utilization of these nano-scale materials, questions related with its impact over the environment and human health must be addressed too, so that potential risks can be limited at early stages of development. At this time, occupational health risks associated with manufacturing and use of nanoparticles are not yet clearly understood. However, workers may be exposed to nanoparticles through inhalation at levels that can greatly exceed ambient concentrations. Current workplace exposure limits are based on particle mass, but this criteria could not be adequate in this case as nanoparticles are characterized by very large surface area, which has been pointed out as the distinctive characteristic that could even turn out an inert substance into another substance exhibiting very different interactions with biological fluids and cells. Therefore, it seems that, when assessing human exposure based on the mass concentration of particles, which is widely adopted for particles over 1 μm, would not work in this particular case. In fact, nanoparticles have far more surface area for the equivalent mass of larger particles, which increases the chance they may react with body tissues. Thus, it has been claimed that surface area should be used for nanoparticle exposure and dosing. As a result, assessing exposure based on the measurement of particle surface area is of increasing interest. It is well known that lung deposition is the most efficient way for airborne particles to enter the body and cause adverse health effects. If nanoparticles can deposit in the lung and remain there, have an active surface chemistry and interact with the body, then, there is potential for exposure. It was showed that surface area plays an important role in the toxicity of nanoparticles and this is the metric that best correlates with particle-induced adverse health effects. The potential for adverse health effects seems to be directly proportional to particle surface area. The objective of the study is to identify and validate methods and tools for measuring nanoparticles during production, manipulation and use of nanomaterials.
Resumo:
The characteristic topographical features (crystallite dimensions, surface morphology and roughness) of bioceramics may influence the adsorption of proteins relevant to bone regeneration. This work aims at analyzing the influence of two distinct nanophased hydroxyapatite (HA) ceramics, HA725 and HA1000 on fibronectin (FN) and osteonectin (ON) adsorption and MC3T3-E1 osteoblast adhesion and morphology. Both substrates were obtained using the same hydroxyapatite nanocrystals aggregates and applying the sintering temperatures of 725ºC and 1000ºC, respectively. The two proteins used in this work, FN as an adhesive glycoprotein and ON as a counter-adhesive protein, are known to be involved in the early stages of osteogenesis (cell adhesion, mobility and proliferation). The properties of the nanoHA substrates had an important role in the adsorption behavior of the two studied proteins and clearly affected the MC3T3- E1 morphology, distribution and metabolic activity. HA1000 surfaces presenting slightly larger grain size, higher root-mean-square roughness (Rq), lower surface area and porosity, allowed for higher amounts of both proteins adsorbed. These substrates also revealed increased number of exposed FN cell-binding domains as well as higher affinity for osteonectin. Regarding the osteoblast adhesion results, improved viability and cell number were found for HA1000 surfaces as compared to HA725 ones, independently of the presence or type of adsorbed protein. Therefore the osteoblast adhesion and metabolic activity seemed to be more sensitive to surfaces morphology and roughness than to the type of adsorbed proteins.
Resumo:
A dc magnetron sputtering-based method to grow high-quality Cu2ZnSnS4 (CZTS) thin films, to be used as an absorber layer in solar cells, is being developed. This method combines dc sputtering of metallic precursors with sulfurization in S vapour and with post-growth KCN treatment for removal of possible undesired Cu2−xS phases. In this work, we report the results of a study of the effects of changing the precursors’ deposition order on the final CZTS films’ morphological and structural properties. The effect of KCN treatment on the optical properties was also analysed through diffuse reflectance measurements. Morphological, compositional and structural analyses of the various stages of the growth have been performed using stylus profilometry, SEM/EDS analysis, XRD and Raman Spectroscopy. Diffuse reflectance studies have been done in order to estimate the band gap energy of the CZTS films. We tested two different deposition orders for the copper precursor, namely Mo/Zn/Cu/Sn and Mo/Zn/Sn/Cu. The stylus profilometry analysis shows high average surface roughness in the ranges 300–550 nm and 230–250 nm before and after KCN treatment, respectively. All XRD spectra show preferential growth orientation along (1 1 2) at 28.45◦. Raman spectroscopy shows main peaks at 338 cm−1 and 287 cm−1 which are attributed to Cu2ZnSnS4. These measurements also confirm the effectiveness of KCN treatment in removing Cu2−xS phases. From the analysis of the diffuse reflectance measurements the band gap energy for both precursors’ sequences is estimated to be close to 1.43 eV. The KCN-treated films show a better defined absorption edge; however, the band gap values are not significantly affected. Hot point probe measurements confirmed that CZTS had p-type semiconductor behaviour and C–V analysis was used to estimate the majority carrier density giving a value of 3.3 × 1018 cm−3.
Resumo:
Tamoxifen is a selective estrogen receptor modulator that is used as an adjuvant and/or chemotherapeutic agent for the treatment of all stages of hormone-dependent breast cancer. Currently there is a deep interest in the study of tamoxifen biotransformation and identification of metabolites since they can significantly contribute to the overall pharmacological or adverse effects of the drug. Accordingly, the study of the electrochemical behavior of tamoxifen in aqueous solution is reported. To clarify the occurring oxidative process and to assess the influence of the functional groups on the oxidation mechanism, the voltammetric assessment was extended to the study of tamoxifen’s analogues (E)-tamoxifen and dihydrotamoxifen, and to its main phase I oxidative metabolite, N-desmethyl tamoxifen. The data found shows that the oxidative processes occurring in tamoxifen are essentially related with the two chemical moieties present in the molecule: the substituted aromatic nucleus and the tertiary amine group. Moreover, the results obtained suggest that the ethylenic linkage is not critical for tamoxifen’s oxidation although it could play an important role in the course of the oxidation process. These results could contribute to highlight some remaining questions regarding tamoxifen’s metabolic behavior and to the development of new analytical strategies, based on electrochemical approaches.
Resumo:
Alzheimer Disease (AD) is characterized by progressive cognitive decline and dementia. Earlier diagnosis and classification of different stages of the disease are currently the main challenges and can be assessed by neuroimaging. With this work we aim to evaluate the quality of brain regions and neuroimaging metrics as biomarkers of AD. Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox functionalities were used to study AD by T1weighted, Diffusion Tensor Imaging and 18FAV45 PET, with data obtained from the AD Neuroimaging Initiative database, specifically 12 healthy controls (CTRL) and 33 patients with early mild cognitive impairment (EMCI), late MCI (LMCI) and AD (11 patients/group). The metrics evaluated were gray-matter volume (GMV), cortical thickness (CThk), mean diffusivity (MD), fractional anisotropy (FA), fiber count (FiberConn), node degree (Deg), cluster coefficient (ClusC) and relative standard-uptake-values (rSUV). Receiver Operating Characteristic (ROC) curves were used to evaluate and compare the diagnostic accuracy of the most significant metrics and brain regions and expressed as area under the curve (AUC). Comparisons were performed between groups. The RH-Accumbens/Deg demonstrated the highest AUC when differentiating between CTRLEMCI (82%), whether rSUV presented it in several brain regions when distinguishing CTRL-LMCI (99%). Regarding CTRL-AD, highest AUC were found with LH-STG/FiberConn and RH-FP/FiberConn (~100%). A larger number of neuroimaging metrics related with cortical atrophy with AUC>70% was found in CTRL-AD in both hemispheres, while in earlier stages, cortical metrics showed in more confined areas of the temporal region and mainly in LH, indicating an increasing of the spread of cortical atrophy that is characteristic of disease progression. In CTRL-EMCI several brain regions and neuroimaging metrics presented AUC>70% with a worst result in later stages suggesting these indicators as biomarkers for an earlier stage of MCI, although further research is necessary.
Resumo:
OBJECTIVE To analyze physical activity during adolescence in participants of the 1993 Pelotas Birth Cohort Study, Brazil. METHODS Data on leisure time physical activity at 11, 15, and 18 years of age were analyzed. At each visit, a cut-off point of 300 min/week was used to classify adolescents as active or inactive. A total of 3,736 participants provided data on physical activity at each of the three age points. RESULTS A significant decline in the proportion of active adolescents was observed from 11 to 18 years of age, particularly among girls (from 32.9% to 21.7%). The proportions of girls and boys who were active at all three age points were 28.0% and 55.1%, respectively. After adjustment for sex, economic status, and skin color, participants who were active at 11 and 15 years of age were 58.0% more likely to be active at 18 years of age compared with those who were inactive at 11 and 15 years of age. CONCLUSIONS Physical activity declined during adolescence and inactivity tended to track over time. Our findings reinforce the need to promote physical activity at early stages of life, because active behavior established early tends to be maintained over time.
Resumo:
An experimental and Finite Element study was performed on the bending behaviour of wood beams of the Pinus Pinaster species repaired with adhesively-bonded carbon–epoxy patches, after sustaining damage by cross-grain failure. This damage is characterized by crack growth at a small angle to the beams longitudinal axis, due to misalignment between the wood fibres and the beam axis. Cross-grain failure can occur in large-scale in a wood member when trees that have grown spirally or with a pronounced taper are cut for lumber. Three patch lengths were tested. The simulations include the possibility of cohesive fracture of the adhesive layer, failure within the wood beam in two propagation planes and patch interlaminar failure, by the use of cohesive zone modelling. The respective cohesive properties were estimated either by an inverse method or from the literature. The comparison with the tests allowed the validation of the proposed methodology, opening a good perspective for the reduction of costs in the design stages of these repairs due to extensive experimentation.
Resumo:
Dissertação apresentada para a obtenção do Grau de Mestre em Genética Molecular e Biomedicina, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
The morpho-structural evolution of oceanic islands results from competition between volcano growth and partial destruction by mass-wasting processes. We present here a multi-disciplinary study of the successive stages of development of Faial (Azores) during the last 1 Myr. Using high-resolution digital elevation model (DEM), and new K/Ar, tectonic, and magnetic data, we reconstruct the rapidly evolving topography at successive stages, in response to complex interactions between volcanic construction and mass wasting, including the development of a graben. We show that: (1) sub-aerial evolution of the island first involved the rapid growth of a large elongated volcano at ca. 0.85 Ma, followed by its partial destruction over half a million years; (2) beginning about 360 ka a new small edifice grew on the NE of the island, and was subsequently cut by normal faults responsible for initiation of the graben; (3) after an apparent pause of ca. 250 kyr, the large Central Volcano (CV) developed on the western side of the island at ca 120 ka, accumulating a thick pile of lava flows in less than 20 kyr, which were partly channelized within the graben; (4) the period between 120 ka and 40 ka is marked by widespread deformation at the island scale, including westward propagation of faulting and associated erosion of the graben walls, which produced sedimentary deposits; subsequent growth of the CV at 40 ka was then constrained within the graben, with lava flowing onto the sediments up to the eastern shore; (5) the island evolution during the Holocene involves basaltic volcanic activity along the main southern faults and pyroclastic eruptions associated with the formation of a caldera volcano-tectonic depression. We conclude that the whole evolution of Faial Island has been characterized by successive short volcanic pulses probably controlled by brief episodes of regional deformation. Each pulse has been separated by considerable periods of volcanic inactivity during which the Faial graben gradually developed. We propose that the volume loss associated with sudden magma extraction from a shallow reservoir in different episodes triggered incremental downward graben movement, as observed historically, when immediate vertical collapse of up to 2 m was observed along the western segments of the graben at the end of the Capelinhos eruptive crises (1957-58).
Resumo:
Metacyclic trypomastigotes ol the CL strain of Trypanosoma cruzi obtained from triatomid vectors and from axenic cultures were comparatively analysed as to their antigen make-up and immunogenic characteristics. They were found to be similar by the various parameters examined. Thus, sera of mice immunized with either one of the two metacyclic types precipitated a 82Kd surface protein from 131I-labeled culture metacyclics. Sera of mice protected against acute T. cruzi infection by immunization with killed culture metacyclics of a different strain (G) recognized, by immunoblotting, a 77Kd protein in both types of CL strain metacyclics. A monoclonal antibody raised against G strain metacyclics, and specific for metacyclic stages of this strain, reacted with both CL strain metacyclic types. Both metacyclic forms were similarly Iysed by various anti-T. cruzi sera, in a complement-mediated reaction.
Resumo:
The hepatic changes observed in liver specimen from either biopsy or necropsy of 47 patients with visceral leishmaniasis permited us to define three different histopathological patterns of involvement: typical, nodular, and fibrogenic. These patterns seem to be representative of different evolutive stages of the hepatic involvement in the disease either towards a more benign evolution or to more chronic stage with fibrosis and "cirrhosis". These histopathological evolutive stages are related to the prognosis of the disease.
Resumo:
This paper describes a high-resolution stratigraphic correlation scheme for the early to middle Miocene Lagos-Portimão Formation of central Algarve, southern Portugal. The Lagos Portimão-Formation of central Algarve is a 60 m thick package of horizontally bedded siliciclastics and carbonates. The bryozoan and mollusc dominated biofacies is typical of a shallow marine, warm-temperate climatic environment. We define four stratigraphic marker beds based on biofacies, lithology, and gamma-ray signatures. Marker bed 1 is a reddish shell bed composed predominantly of bivalve shells in various stages of fragmentation. Marker bed 2 is a fossiliferous sandstone / sandy rudstone characterized by bryozoan masses. Marker bed 3 is also a fossiliferous sandstone with abundant larger foraminifers and foliate bryozoans. Marker bed 4 is composed of three distinct layers; two fossiliferous sandstones with an intercalated shell bed. The upper sandstone unit displays thickets of the bryozoan Celleporaria palmate associated with the coral Culizia parasitica. This stratigraphic framework allows to correlate isolated outcrops within the stratigraphic context of the Lagos-Portimão Formation and to establish high resolution chronostratigraphic Sr-isotopic dating.
Resumo:
The life cycle of Lagochilascaris minor was studied using material collected from human lesion and applying the experimental model: rodents (mice, hamsters), and carnivorae (cats, dogs). In mice given infective eggs, orally, hatch of the third stage larvae was noted in the gut wall, with migration to liver, lungs, skeletal musculature and subcutaneous tissue becoming, soon after, encysted. In cats infected with skinned carcasses of mice (60 to 235 days of infection) it was observed: hatch of third stage larvae from the nodules (cysts) in the stomach, migration through the oesophagus, pharynx, trachea, related tissues (rhino-oropharynx), and cervical lymphonodes developing to the mature stage in any of these sites on days 9-20 post inoculation (P.I.). There was no parasite development up to the mature stage in cats inoculated orally with infective eggs, which indicates that the life cycle of this parasite includes an obligatory intermediate host. In one of the cats (fed carcass of infected mice) necropsied on day 43 P.I., it was observed the occurence of the self-infective cycle of L. minor in the lung tissues and in the cervical region which was characterized by the finding of eggs in different stages of development, third stage larvae and mature worms. It's believed that some component of the carnivorae gastrointestinal tracts may preclude the development of third stage larvae from L. minor eggs what explains the interruption of the life cycle in animals fed infective eggs. It's also pointed out the role of the intermediate host in the first stages of the life cycle of this helminth.