1000 resultados para speed decomposition
Resumo:
A driver model is presented capable of optimising the trajectory of a simple dynamic nonlinear vehicle, at constant forward speed, so that progression along a predefined track is maximised as a function of time. In doing so, the model is able to continually operate a vehicle at its lateral-handling limit, maximising vehicle performance. The technique used forms a part of the solution to the motor racing objective of minimising lap time. A new approach of formulating the minimum lap time problem is motivated by the need for a more computationally efficient and robust tool-set for understanding on-the-limit driving behaviour. This has been achieved through set point-dependent linearisation of the vehicle model and coupling the vehicle-track system using an intrinsic coordinate description. Through this, the geometric vehicle trajectory had been linearised relative to the track reference, leading to new path optimisation algorithm which can be formed as a computationally efficient convex quadratic programming problem. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
This paper presents the design and testing of a 250 kW medium-speed Brushless Doubly-Fed Induction Generator (Brushless DFIG), and its associated power electronics and control systems. The experimental tests confirm the design, and show the system's steady-state and dynamic performance. The medium-speed Brushless DFIG in combination with a simplified two-stage gearbox promises a low-cost low-maintenance and reliable drive train for wind turbine applications.
Resumo:
Computations are made of a short cowl coflowing jet nozzle with a bypass ratio 8 : 1. The core flow is heated, making the inlet conditions reminiscent of those for a real engine. A large eddy resolving approach is used with a 12 × 106 cell mesh. Since the code being used tends towards being dissipative the sub-grid scale (SGS) model is abandoned giving what can be termed Numerical Large Eddy Simulation (NLES). To overcome near wall modelling problems a hybrid NLES-RANS (Reynolds Averaged Navier-Stokes) related method is used. For y+ ≤ 60 a κ-l model is used. Blending between the two regions makes use of the differential Hamilton-Jabobi (HJ) equation, an extension of the eikonal equation. Results show encouraging agreement with existing measurements of other workers. The eikonal equation is also used for acoustic ray tracing to explore the effect of the mean flow on acoustic ray trajectories, thus yielding a coherent solution strategy. Copyright © 2011 by ASME.
Resumo:
Measurements and predictions are made of a short-cowl coflowing jet with a bypass ratio of 8:1. The Reynolds number is 300,000, and the inlet Mach numbers are representative of aeroengine conditions. The low Reynolds number of the measurements makes the case well suited to the assessment of large-eddy-simulation-related strategies. The nozzle concentricity is carefully controlled to deal with the emerging metastability issues of jets with coflow. Measurements of mean quantities and turbulence statistics are made using both laser Doppler anemometry and particle image velocimetry. The simulations are completed on 6× 106, 12× 106, and 50 × 106 cell meshes. To overcome near-wall modeling problems, a hybrid large-eddy-simulation-Reynolds-averaged-Navier-Stokesrelated method is used. The near-wall Reynolds-averaged-Navier-Stokes layer is helpful in preventing nonphysical separation from the nozzle wall.Copyright © 2010 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Measurements and predictions are made of a short cowl co-flowing jet with a bypass ratio of 8:1. The Reynolds number for computations and measurements are matched at 300,000 and the Mach numbers representative of realistic jet conditions with core and co flow velocities of 240m/s and 216m/s respectively. The low Reynolds number of the measurements makes the case well suited to the assessment of large eddy resolving computational strategies. Also, the nozzle concentricity was carefully controlled to deal with the emerging metastability issues of jets with coflow. Measurements of mean quantities and turbulence statistics are made using both two dimensional coincident LDA and PIV systems. The computational simulations are completed on a modest 12×106 mesh. The simulation is now being run on a 50×106 mesh using hybrid RANSNLES (Numerical Large Eddy Simulation). Close to the nozzle wall a k-l RANS model is used. For an axisymmetric jet, comparison is made between simulations which use NLES, RANSNLES and also a simple imposed velocity profile where the nozzle is not modeled. The use of a near wall RANS model is shown to be beneficial. When compared with the measurements the NLES results are encouraging. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
A circular-type magnetic flux pump (CTMFP) device was built to study the flux dynamics on a 2-inch-diameter YBCO thin film. This CTMFP is composed of two CTMFP coils, with each CTMFP coil containing concentric three-phase windings and a dc winding. We connected the three-phase windings to the output of a commercial inverter. By changing the output frequency of the inverter, the sweeping speed of the circular-shaped travelling magnetic wave can be changed. The connection of the phase coils follows the forward consequence, so that the circular-shaped travelling magnetic wave travels inward to the center. The output frequency f was changed from f = 0.01 to 1000.0 Hz. The YBCO sample was sandwiched between the two CTMFP coils to experience the circular-shaped travelling magnetic wave. It was found that the increase of the flux density in the center of the film is independent of the sweeping frequency. In high frequency f = 1000.0Hz, even if the waveform had changed a lot, the increment is still the same as in low frequencies. © 2012 IEEE.
Resumo:
In this paper, high and low speed tip flows are investigated for a high-pressure turbine blade. Previous experimental data are used to validate a CFD code, which is then used to study the tip heat transfer in high and low speed cascades. The results show that at engine representative Mach numbers the tip flow is predominantly transonic. Thus, compared to the low speed tip flow, the heat transfer is affected by reductions in both the heat transfer coefficient and the recovery temperature. The high Mach numbers in the tip region (M>1.5) lead to large local variations in recovery temperature. Significant changes in the heat transfer coefficient are also observed. These are due to changes in the structure of the tip flow at high speed. At high speeds, the pressure side corner separation bubble reattachment occurs through supersonic acceleration which halves the length of the bubble when the tip gap exit Mach number is increased from 0.1 to 1.0. In addition, shock/boundary-layer interactions within the tip gap lead to large changes in the tip boundary-layer thickness. These effects give rise to significant differences in the heat-transfer coefficient within the tip region compared to the low-speed tip flow. Compared to the low speed tip flow, the high speed tip flow is much less dominated by turbulent dissipation and is thus less sensitive to the choice of turbulence model. These results clearly demonstrate that blade tip heat transfer is a strong function of Mach number, an important implication when considering the use of low speed experimental testing and associated CFD validation in engine blade tip design. Copyright © 2009 by ASME.
Resumo:
The objective of this study was to examine the operating characteristics of a light duty multi cylinder compression ignition engine with regular gasoline fuel at low engine speed and load. The effects of fuel stratification by means of multiple injections as well as the sensitivity of auto-ignition and burn rate to intake pressure and temperature are presented. The measurements used in this study included gaseous emissions, filter smoke opacity and in-cylinder indicated information. It was found that stable, low emission operation was possible with raised intake manifold pressure and temperature, and that fuel stratification can lead to an increase in stability and a reduced reliance on increased temperature and pressure. It was also found that the auto-ignition delay sensitivity of gasoline to intake temperature and pressure was low within the operating window considered in this study. Nevertheless, the requirement for an increase of pressure, temperature and stratification in order to achieve auto-ignition time scales small enough for combustion in the engine was clear, using pump gasoline. Copyright © 2009 SAE International.
Resumo:
This paper analyzes reaction and thermal front development in porous reservoirs with reacting flows, such as those encountered in shale oil extraction. A set of dimensionless parameters and a 3D code are developed in order to investigate the important physical and chemical variables of such reservoirs when heated by in situ methods. This contribution builds on a 1D model developed for the precursor study to this work. Theory necessary for this study is presented, namely shale decomposition chemical mechanisms, governing equations for multiphase flow in porous media and necessary closure models. Plotting the ratio of the thermal wave speed to the fluid speed allows one to infer that the reaction wave front ends where this ratio is at a minimum. The reaction front follows the thermal front closely, thus allowing assumptions to be made about the extent of decomposition solely by looking at thermal wave progression. Furthermore, this sensitivity analysis showed that a certain minimum permeability is required in order to ensure the formation of a traveling thermal wave. It was found that by studying the non-dimensional governing parameters of the system one can ascribe characteristic values for these parameters for given initial and boundary conditions. This allows one to roughly predict the performance of a particular method on a particular reservoir given approximate values for initial and boundary conditions. Channelling and flow blockage due to carbon residue buildup impeded each method's performance. Blockage was found to be a result of imbalanced heating. Copyright 2012, Society of Petroleum Engineers.
Resumo:
This paper presents the design and testing of a 250 kW medium-speed Brushless Doubly-Fed Generator (Brushless DFIG), and its associated power electronics and control systems. The experimental tests confirm the design, and show the system's steady-state and dynamic performance. The medium-speed Brushless DFIG in combination with a simplified twostage gearbox promises a low-cost low-maintenance and reliable drive train for wind turbine applications.