782 resultados para specialty fibres
Resumo:
The biocompatibility and biodegradability of natural silk fibres and the benign conditions under which they (with impressive mechanical properties) are produced represent a biomimetic ideal. This ideal has inspired people in both academia and industry to prepare silk-mimetic polymers and proteins by chemical and/or biotechnological means. in the present paper, we aim to give an overview of the design principles of such silk-inspired polymers/proteins, their processing into various materials morphologies, their mechanical and biological properties, and, finally, their technical and biomedical applications.
Resumo:
Objectives: A detailed investigation of the gross and microscopic anatomy of ligamentum flavum. Methods: Material included 14 lumbar vertebral columns obtained from the Anatomy Department, King Faisal University, Dammam during the period between January 2005 and January 2006. Height, width, and thickness of ligamenta flava were measured. A microscopic study was also performed. Computed tomography scan was carried out on the lumbar vertebrae of 30 patients for measuring the ligamentum flavum. Results: The anatomical results showed that the right and left ligamenta flava join in the midline forming an acute angle with a ventral opening. The ligamentum flavum is rectangular and has 4 borders and 2 surfaces. It is attached inferiorly to the superior edge and the postero-superior surface of the lamina below. It is attached superiorly to the inferior edge and the antero-inferior surface of the lamina above. Its height ranges from 14-22 mm. The width of its lower part ranges from 11-23 mm, and the thickness ranges from 3.5-6 mm. The histological results revealed that it is comprised chiefly of elastic fibres and some collagen fibres. Conclusion: The information reported in this study is of clinical value in the practice of lumbar epidural anesthesia or analgesia. Epidural puncture will be best performed through the lower and medial portion of the ligamentum flavum slightly lateral to the midline.
Resumo:
Geography and retail store location are inherently bound together; this study links food retail changes to systemic logistics changes in an emerging market. Current logistic practices underplay demand-led models and online market evolution in large metropolises such as Istanbul, Rio de Janeiro, and Delhi. The later include raising income and education, access to a wide range of technologies, traffic and transport difficulties, lagging retail provision, changing family structure and roles, as well as changing food culture and taste. The study incorporates demand for premium products defined by Kapferer and Bastien, (2009b) as comprising a broad variety of higher quality and unique or distinctive products and brands including in grocery organic ranges, healthy options, allergy free selections, and international and gourmet/specialty products through an online grocery model (n=356) that integrates a novel view of home delivery (HD) in Istanbul. More importantly from a logistic perspective our model incorporates any products from any online vendors broadening the range beyond listed items found in any traditional online supermarkets. Data collected via phone survey and analysed via structural equation modelling (SEM) suggest that the offer of online premium products significantly affects consumers’ delivery logistics expectations. We discuss logistics operations and business management implications, identifying the emerging geography of logistic models which respond to consumers’ unmet expectations using multiple sourcing and consolidation points.
Resumo:
Introduction
As general practice (GP) is the main source of referrals to neurologists, neurology education for GP trainees is important. We investigated the existence of neurophobia, contributing factors and potential prevention strategies among GP trainees.
MethodsIn a questionnaire survey interest, knowledge, confidence and perceived difficulty in neurology were compared with different medical specialties. Reasons for difficulty with neurology, postgraduate neurology education experience, learning methods and suggested teaching improvements were examined.
ResultsOf 205 GP trainees, 118 (58%) completed the questionnaire. Threshold analyses justified categorical intervals for the Likert responses. Trainees recorded poorer knowledge (p < 0.001), less confidence (p < 0.001) and more perceived difficulty (p < 0.001) with neurology than with any other medical specialty. GP trainees had less interest in neurology than any other medical specialty (Duncan test, p < 0.001). There was a similar gradation in difficulty and confidence perception across medical specialties. Hospital and community-based neurology teaching was graded as “poor” or “very poor” by over 60% of GP trainees. There were multiple perceived causes of neurophobia, including neuroanatomy and poor quality teaching. More organised clinical teaching and referral guidance were suggested to address GP neurophobia.
ConclusionsNeurophobia is common among GP trainees in Northern Ireland. GP trainees have clear and largely uniform ideas on improving their neurology education. GP training posts should reflect the importance of neurology within the GP curriculum.
Resumo:
Phalloidin fluorescence technique, enzyme cytochemistry and immunocytochemistry in conjunction with confocal scanning laser microscopy were used for the first time to describe the nervous and muscle systems of the viviparous monogenean parasite, Gyrodactylus rysavyi inhabiting the gills and skin of the Nile catfish Clarias gariepinus. The body wall muscles are composed of an outer layer of circular fibres, an intermediate layer of paired longitudinal fibres and an inner layer of well-spaced bands of diagonal fibres arranged in two crossed directions. The musculature of the pharynx, intestine, reproductive tract and the most prominent muscles of the haptor were also described. Two characteristic muscular pads were found lying in the anterior region of the haptor in close contact with the hamuli. To each one of these pads, a group of ventral extrinsic muscles was connected. The role of this ventral extrinsic muscle in the body movement was discussed. The mechanism operating the marginal hooklets was also discussed. The central nervous system (CNS) consists of paired cerebral ganglia from which three pairs of longitudinal ventral, lateral and dorsal nerve cords arise. The nerve cords are connected at intervals by many transverse connectives. The CNS is better developed ventrally than dorsally or laterally and it has the highest reactivity for all neuroactive substances examined. Both the central and the peripheral nervous system (PNS) are bilaterally symmetrical. Structural and functional correlates of the neuromusculature of the pharynx, haptor and reproductive tracts were explained. The results implicated acetylcholine, FMRFamide-related peptides (FaRPs) and serotonin in sensory and motor function. The results were compared with those of the monogeneans Macrogyrodactylus clarii and M. congolensis inhabiting the gills and skin respectively of the same host fish C. gariepinus.
Resumo:
Phalloidin fluorescence technique, enzyme cytochemistry and immunocytochemistry, in conjunction with confocal scanning laser microscopy, were used to describe the neuromusculature of the monogenean skin parasite Macrogyrodactylus congolensis from the Nile catfish Clarias gariepinus. The body wall muscles are composed of an outer layer of compactly arranged circular fibres, an intermediate layer of paired longitudinal fibres and an inner layer of well-spaced bands of diagonal fibres arranged in two crossed directions. The central nervous system consists of paired cerebral ganglia from which three pairs of longitudinal ventral, lateral and dorsal nerve cords arise. The nerve cords are connected at intervals by many transverse connectives. Both central and peripheral nervous systems are bilaterally symmetrical and better developed ventrally than laterally and dorsally. Structural and functional correlates of the neuromusculature of the pharynx, haptor and reproductive tracts were examined. Results implicate acetylcholine, FMRFamide-related peptides and serotonin in sensory and motor function. The results were compared with those of Macrogyrodactylus clarii, a gill parasite of the same host fish C. gariepinus.
Resumo:
Introduction: Chitons (Polyplacophora) are molluscs considered to have a simple nervous system without cephalisation. The position of the class within Mollusca is the topic of extensive debate and neuroanatomical characters can provide new sources of phylogenetic data as well as insights into the fundamental biology of the organisms. We report a new discrete anterior sensory structure in chitons, occurring throughout Lepidopleurida, the order of living chitons that retains plesiomorphic characteristics.
Results: The novel "Schwabe organ" is clearly visible on living animals as a pair of streaks of brown or purplish pigment on the roof of the pallial cavity, lateral to or partly covered by the mouth lappets. We describe the histology and ultrastructure of the anterior nervous system, including the Schwabe organ, in two lepidopleuran chitons using light and electron microscopy. The oesophageal nerve ring is greatly enlarged and displays ganglionic structure, with the neuropil surrounded by neural somata. The Schwabe organ is innervated by the lateral nerve cord, and dense bundles of nerve fibres running through the Schwabe organ epithelium are frequently surrounded by the pigment granules which characterise the organ. Basal cells projecting to the epithelial surface and cells bearing a large number of ciliary structures may be indicative of sensory function. The Schwabe organ is present in all genera within Lepidopleurida (and absent throughout Chitonida) and represents a novel anatomical synapomorphy of the clade.
Conclusions: The Schwabe organ is a pigmented sensory organ, found on the ventral surface of deep-sea and shallow water chitons; although its anatomy is well understood, its function remains unknown. The anterior commissure of the chiton oesophagial nerve ring can be considered a brain. Our thorough review of the chiton central nervous system, and particularly the sensory organs of the pallial cavity, provides a context to interpret neuroanatomical homology and assess this new sense organ.
Resumo:
Low-velocity impact damage can drastically reduce the residual strength of a composite structure even when the damage is barely visible. The ability to computationally predict the extent of damage and compression-after-impact (CAI) strength of a composite structure can potentially lead to the exploration of a larger design space without incurring significant time and cost penalties. A high-fidelity three-dimensional composite damage model, to predict both low-velocity impact damage and CAI strength of composite laminates, has been developed and implemented as a user material subroutine in the commercial finite element package, ABAQUS/Explicit. The intralaminar damage model component accounts for physically-based tensile and compressive failure mechanisms, of the fibres and matrix, when subjected to a three-dimensional stress state. Cohesive behaviour was employed to model the interlaminar failure between plies with a bi-linear traction–separation law for capturing damage onset and subsequent damage evolution. The virtual tests, set up in ABAQUS/Explicit, were executed in three steps, one to capture the impact damage, the second to stabilize the specimen by imposing new boundary conditions required for compression testing, and the third to predict the CAI strength. The observed intralaminar damage features, delamination damage area as well as residual strength are discussed. It is shown that the predicted results for impact damage and CAI strength correlated well with experimental testing without the need of model calibration which is often required with other damage models.
Resumo:
The preliminary evaluation is described of a new electro-thermal anti-icing/de-icing device for carbon fibre composite aerostructures. The heating element is an electro-conductive carbon-based textile (ECT) by Gorix. Electrical shorting between the structural carbon fibres and the ECT was mitigated by incorporating an insulating layer formed of glass fibre plies or a polymer film. A laboratory-based anti-icing and de-icing test program demonstrated that the film-insulated devices yielded better performance than the glssass fibre insulated ones. The heating capability after impact damage was maintained as long as the ECT fabric was not breached to the extent of causing electrical shorting. A modified structural scarf repair was shown to restore the heating capacity of a damaged specimen.
Resumo:
The design optimization of cold-formed steel portal frame buildings is considered in this paper. The objective function is based on the cost of the members for the main frame and secondary members (i.e., purlins, girts, and cladding for walls and roofs) per unit area on the plan of the building. A real-coded niching genetic algorithm is used to minimize the cost of the frame and secondary members that are designed on the basis of ultimate limit state. It iis shown that the proposed algorithm shows effective and robust capacity in generating the optimal solution, owing to the population's diversity being maintained by applying the niching method. In the optimal design, the cost of purlins and side rails are shown to account for 25% of the total cost; the main frame members account for 27% of the total cost, claddings for the walls and roofs accounted for 27% of the total cost.
Resumo:
Induction of in vivo responses by implanted biomaterials is of great interest in the medical device field. Calcium phosphate bone cements (CPCs) can potentially promote natural bone remodelling and ingrowth in vivo and, as such are becoming more common place in a range of orthopaedic procedures. However, concerns remain regarding their mechanical and handling properties. Compressive modulus and fracture toughness of CPCs can be improved, without compromising injectability and setting time, through the incorporation of bovine collagen fibres1. Incorporation of marine derived collagen fibres has also yielded similar improvements2. It is hypothesised that, due to its role in bone formation and function, that incorporation of collagen in CPCs will also result in biological benefits.
The biological properties of α-TCP-CPC were largely unchanged by the incorporation of marine derived collagen. However, as a result of significant improvements to the mechanical properties, its incorporation may still result in a suitable alternative to some commercially available bone cements.
Resumo:
Current therapies that target vascular endothelial growth factor (VEGF) have become a mainstream therapy for the management of diabetic macular oedema. The treatment involves monthly repeated intravitreal injections of VEGF inhibitors. VEGF is an important growth factor for many retinal cells, including different types of neurons. In this study, we investigated the adverse effect of multiple intravitreal anti-VEGF injections (200 ng/μl/eye anti-mouse VEGF164, once every 2 weeks totalling 5-6 injections) to retinal neurons in Ins2(Akita) diabetic mice. Funduscopic examination revealed the development of cotton wool spot-like lesions in anti-VEGF treated Ins2(Akita) mice after 5 injections. Histological investigation showed focal swellings of retinal nerve fibres with neurofilament disruption. Furthermore, anti-VEGF-treated Ins2(Akita) mice exhibited impaired electroretinographic responses, characterized by reduced scotopic a- and b-wave and oscillatory potentials. Immunofluorescent staining revealed impairment of photoreceptors, disruptions of synaptic structures and loss of amacrine and retinal ganglion cells in anti-VEGF treated Ins2(Akita) mice. Anti-VEGF-treated WT mice also presented mild amacrine and ganglion cell death, but no overt abnormalities in photoreceptors and synaptic structures. At the vascular level, exacerbated albumin leakage was observed in anti-VEGF injected diabetic mice. Our results suggest that sustained intraocular VEGF neutralization induces retinal neurodegeneration and vascular damage in the diabetic eye.
Resumo:
Substance P (SP) is a member of the structurally related family of neuropeptides known as the tachykinins. In addition to neurotransmitter roles, the tachykinins are also known to modulate local inflammation which depends on signalling between the neuropeptide molecules and target cells and tissues. SP mediates its effects through a specific receptor, known as the substance P receptor or the neurokinin 1 (NK-1) receptor. The NK-1 receptor is a G-protein associated integral membrane protein and although it has been studied in a wide range of tissues, to date there has been no published data on the localisation of the NK-1 receptor in human gingival tissue. Objective: The aim of this study was to examine the distribution of the NK-1 receptor in human gingival tissue using immunocytochemistry. Method: Gingival tissue was obtained from patients undergoing periodontal surgery. Tissue was fixed in paraformaldehyde and embedded in wax for sectioning. Sections were dewaxed in xylene and then rehydrated in alcohols and phosphate buffered saline. Rehydrated sections were probed with rabbit polyclonal antibody to human NK-1 receptor which was subsequently detected using anti-rabbit horseradish peroxidase conjugate and diaminobenzidine as substrate. Results: Immunocytochemistry revealed that the NK-1 receptor was distributed along nerve fibres and blood vessel endothelial cells, suggesting these areas are main targets for the actions of SP via the NK-1 receptor. Conclusion: This is the first immunocytochemical report of NK-1 receptors in human gingival tissue and provides evidence for possible NK-1 mediated biological effects of SP in human gingival tissue from periodontitis patients.
Resumo:
Pulpal innervation is not exclusively sensory and there are potential roles for other neuropeptides such as vasoactive intestinal polypeptide (VIP) in pulpal health and disease. In the systemic circulation VIP relaxes vascular smooth muscles leading to vasodilatation. It has been shown that VIP fibres are associated with pulpal blood vessels and therefore VIP may mediate vasoactivity in the dental pulp. A growing body of evidence has now demonstrated that an additional major physiological role of VIP is to act as a survival factor. In order to gain a better understanding of the role of neuropeptides in the caries process it is of interest to specifically examine a role for VIP. Objectives: The aim of the present study was to determine the levels of VIP in carious (moderately carious and grossly carious) compared with non-carious teeth. Methods: A total of 68 teeth were included in the study (22 non-carious, 20 moderately carious and 26 grossly carious). VIP was measured in all samples using a sensitive and specific radioimmunoassay. Results: The mean concentration of VIP in the pulps of non-carious teeth was 7.69 ng/g (9.41 SD) compared to 14.93 ng/g (15.58 SD) in carious teeth. Pair-wise comparisons of VIP levels using Tukey’s test showed statistically significant differences in VIP expression between non-carious and moderately carious teeth (p=0.002) and between moderately and grossly carious teeth, (p=0.002). Conclusion: The significantly increased levels of VIP in moderately carious pulps compared with either non-carious or grossly carious pulps may suggest a role for VIP as a protective or survival factor.
Resumo:
OBJECTIVE:
To design a system of gonioscopy that will allow greater interobserver reliability and more clearly defined screening cutoffs for angle closure than current systems while being simple to teach and technologically appropriate for use in rural Asia, where the prevalence of angle-closure glaucoma is highest.
DESIGN:
Clinic-based validation and interobserver reliability trial.
PARTICIPANTS:
Study 1: 21 patients 18 years of age and older recruited from a university-based specialty glaucoma clinic; study 2: 32 patients 18 years of age and older recruited from the same clinic.
INTERVENTION:
In study 1, all participants underwent conventional gonioscopy by an experienced observer (GLS) using the Spaeth system and in the same eye also underwent Scheimpflug photography, ultrasonographic measurement of anterior chamber depth and axial length, automatic refraction, and biometric gonioscopy with measurement of the distance from iris insertion to Schwalbe's line using a reticule based in the slit-lamp ocular. In study 2, all participants underwent both conventional gonioscopy and biometric gonioscopy by an experienced gonioscopist (NGC) and a medical student with no previous training in gonioscopy (JK).
MAIN OUTCOME MEASURES:
Study 1: The association between biometric gonioscopy and conventional gonioscopy, Scheimpflug photography, and other factors known to correlate with the configuration of the angle. Study 2: Interobserver agreement using biometric gonioscopy compared to that obtained with conventional gonioscopy.
RESULTS:
In study 1, there was an independent, monotonic, statistically significant relationship between biometric gonioscopy and both Spaeth angle (P = 0.001, t test) and Spaeth insertion (P = 0.008, t test) grades. Biometric gonioscopy correctly identified six of six patients with occludable angles according to Spaeth criteria. Biometric gonioscopic grade was also significantly associated with the anterior chamber angle as measured by Scheimpflug photography (P = 0.005, t test). In study 2, the intraclass correlation coefficient between graders for biometric gonioscopy (0.97) was higher than for Spaeth angle grade (0.72) or Spaeth insertion grade (0.84).
CONCLUSION:
Biometric gonioscopy correlates well with other measures of the anterior chamber angle, shows a higher degree of interobserver reliability than conventional gonioscopy, and can readily be learned by an inexperienced observer.