916 resultados para soil physical and chemical properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is currently an increased interest of Government and Industry in the UK, as well as at the European Community level and International Agencies (i.e. Department of Energy, American International Energy Agency), to improve the performance and uptake of Ground Coupled Heat Pumps (GCHP), in order to meet the 2020 renewable energy target. A sound knowledge base is required to help inform the Government Agencies and advisory bodies; detailed site studies providing reliable data for model verification have an important role to play in this. In this study we summarise the effect of heat extraction by a horizontal ground heat exchanger (installed at 1 m depth) on the soil physical environment (between 0 and 1 m depth) for a site in the south of the UK. Our results show that the slinky influences the surrounding soil by significantly decreasing soil temperatures. Furthermore, soil moisture contents were lower for the GCHP soil profile, most likely due to temperature-gradient related soil moisture migration effects and a decreased hydraulic conductivity, the latter as a result of increased viscosity (caused by the lower temperatures for the GCHP soil profile). The effects also caused considerable differences in soil thermal properties. This is the first detailed mechanistic study conducted in the UK with the aim to understand the interactions between the soil, horizontal heat exchangers and the aboveground environment. An increased understanding of these interactions will help to achieve an optimum and sustainable use of the soil heat resources in the future. The results of this study will help to calibrate and verify a simulation model that will provide UK-wide recommendations to improve future GCHP uptake and performance, while safeguarding the soil physical resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste trabalho foi caracterizar a variabilidade espacial da densidade do solo (Ds), teor de água no solo (θ) e porosidade total (Pt) em dois sistemas de manejo da colheita da cana-de-açúcar, com queima e sem queima, em um Latossolo Vermelho, na camada de 0-0,20 m. A área de estudo está localizada no município de Rio Brilhante-MS, na Usina Eldorado. A parcela de cada talhão apresentou malha com comprimento de 180 m e largura de 145,6 m, perfazendo 90 pontos distribuídos na forma de uma grade de nove colunas por dez linhas, com pontos distanciados 20 m de seu vizinho. Foram coletadas amostras de solo na camada de 0-0,20 m, nos anos agrícolas de 2007/2008 e 2008/2009. O sistema de colheita com queima apresentou maior densidade em relação ao mecanizado, nos dois períodos de análise. O teor de água no solo, assim como a porosidade, teve aumento proporcional com relação à diminuição da densidade do sistema de colheita com queima para com o mecanizado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the relationship between CO2 emissions and the soil properties of a tropical Brazilian bare soil was investigated. Carbon dioxide emissions were measured on three different days at different soil temperature and the soil moisture conditions, and the soil properties were investigated at the same points that emissions were measured. The soil CO2 emissions were correlated to carbon content, cation exchange capacity and free iron content at the 65 points studied in an area of 100 x 100 m located in southern Brazil. (C) 2000 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: To evaluate the release of calcium ions, pH and conductivity of a new experimental dental cement (EC) and to compare them with those of mineral trioxide aggregate (MTA-Angelus). Methodology: Five samples of each cement were prepared using plastic tubes 1 mm in diameter and 10 mm long. Each sample was sealed in a test tube containing 10 mL deionized water which was analysed after 24, 48, 72, 96, 192, 240 and 360 h for pH, electrical conductivity and calcium release. The concentration of calcium ions was obtained through atomic absorption spectroscopy technique. The data were analysed statistically using the analysis of variance (ANOVA) and the Student's test (t-test). Results: The pH of the storage solutions was not affected by the material and the interaction of material with time (P > 0.05). However, the time of immersion was significant (P < 0.01) for both materials. For the electric conductivity and calcium release, the interaction of material with time was statistically significant (P < 0.01), indicating that EC and MTA-Angelus did not behave in a similar manner. Conclusions: The experimental cement released calcium and increased the pH of the storage solutions in a similar manner to MTA-Angelus. However, EC showed significantly higher calcium release than commercial MTA-Angelus after 24 h. © 2005 International Endodontic Journal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical properties of 12 different peats have been analyzed by methods from VDLUFA (German Association of Agricultural Analysis and Research Institutes) and EN (European Committee for Standardization, Technical Committee 223: Soil improvers and growing media). The analyses of pH (CaCl 2), contents of salts (H 2O), nutrients (CAT), and Na and Cl (H 2O) were carried out by VDLUFA methods, while those of pH (H 2O), EC (H 2O), nutrients (CAT), Na (CAT and H 2O) and Cl (H 2O) according to EN. Ten milled or sod white peats and two dredged frozen black peats of different degrees of decomposition were used. All of them contained high amounts of Mg, while black peats were additionally high in N, Fe and Zn. The pH-values were about the same for all peats. N- and Mn-contents depended most on peat origin. Analytical values of both CAT-methods were in the same range. Extraction with H 2O (EN) as compared to CAT (EN) resulted in considerably lower values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate the use of biofertilisers for the production of alfalfa shoot, root and nodule dry matter, and also, to evaluate the chemical properties of the soil. This study was conducted in the greenhouse of the Support Department, Animal Production and Health, Faculty of Veterinary Medicine/UNESP, Aracatuba - SP, from May to October 2010. The experimental design was completely randomised with six biofertiliser doses (0, 25, 50, 100, 200 and 400 m(3) ha(-1)) and five replicates. The biofertiliser doses were the primary treatments and the cuts (five) were subplots. The cuts were performed, on average, every 27 days at 10 cm above the soil. At the end of the experiment, the roots, nodules and soil from all experimental units were collected for chemical analysis. We observed a linear increase in dry matter production of the shoots relative to the doses studied. The dry matter production of the roots and nodules was not significantly different. The chemical properties of the soil significantly improved for calcium and magnesium as well as the sum of bases and base saturation with biofertiliser application. Biofertilisers can be used for agricultural production and favourably alter the soil characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rheological, physicochemical properties, emulsification and stability of exopolysaccharides (EPSs) from four rhizobia isolates (LBMP-C01, LBMP-C02, LBMP-C03 and LBMP-C04) were studied. The EPS yields of isolates under these experimental conditions were in the range of 1.5-6.63gL(-1). The LBMP-C04 isolate, which presented the highest EPS production (6.63gL(-1)), was isolated from Arachis pintoi and was identified as a Rhizobium sp. strain that could be explored as a possible potential source for the production of extracellular heteropolysaccharides. All polymers showed a pseudoplastic non-Newtonian fluid behavior or shear thinning property in aqueous solutions. Among the four EPS tested against hydrocarbons, EPS LBMP-C01 was found to be more effective against hexane, olive and soybean oils (89.94%, 82.75% and 81.15%, respectively). Importantly, we found that changes in pH (2-11) and salinity (0-30%) influenced the emulsification of diesel oil by the EPSs. EPSLBMP-C04 presented optimal emulsification capacity at pH 10 (E24=53%) and 30% salinity (E24=27%). These findings contribute to the understanding of the influence of the chemical composition, physical properties and biotechnology applications of rhizobial EPS solutions their bioemulsifying properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blue straggler stars (BSSs) are brighter and bluer (hotter) than the main-sequence (MS) turnoff and they are known to be more massive than MS stars.Two main scenarios for their formation have been proposed:collision-induced stellar mergers (COL-BSSs),or mass-transfer in binary systems (MT-BSSs).Depleted surface abundances of C and O are expected for MT-BSSs,whereas no chemical anomalies are predicted for COL-BSSs.Both MT- and COL-BSSs should rotate fast, but braking mechanisms may intervene with efficiencies and time-scales not well known yet,thus preventing a clear prediction of the expected rotational velocities.Within this context,an extensive survey is ongoing by using the multi-object spectrograph FLAMES@VLT,with the aim to obtain abundance patterns and rotational velocities for representative samples of BSSs in several Galactic GCs.A sub-population of CO-depleted BSSs has been identified in 47 Tuc,with only one fast rotating star detected.For this PhD Thesis work I analyzed FLAMES spectra of more than 130 BSSs in four GCs:M4,NGC 6397,M30 and ω Centauri.This is the largest sample of BSSs spectroscopically investigated so far.Hints of CO depletion have been observed in only 4-5 cases (in M30 and ω Centauri),suggesting either that the majority of BSSs have a collisional origin,or that the CO-depletion is a transient phenomenon.Unfortunately,no conclusions in terms of formation mechanism could be drawn in a large number of cases,because of the effects of radiative levitation. Remarkably,however,this is the first time that evidence of radiative levitation is found in BSSs hotter than 8200 K.Finally, we also discovered the largest fractions of fast rotating BSSs ever observed in any GCs:40% in M4 and 30% in ω Centauri.While not solving the problem of BSS formation,these results provide invaluable information about the BSS physical properties,which is crucial to build realistic models of their evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work was based on the synthesis and characterization of innovative crystals for biomedical and technological applications. Different types of syntheses were developed in order to obtain crystals with high photocatalytic properties. A hydrothermal synthesis was also processed to correlate the chemical-physical characteristics with synthesis parameters obtaining synthesis of nanoparticles of titanium dioxide with different morphology, size and crystalline phase depending on the variation of the synthesis parameters. Also a synthesis in water at 80 °C temperature and low pressure was developed from which anatase containing a small percentage of brookite nanoparticles were obtained, presenting a high photocatalytic activity. These particles have been used to obtain the microcrystals formed by an inorganic core of hydroxyapatite surface covered by TiO2 nanoparticles. Micrometer material with higher photocatalytic has been produced. The same nanoparticles have been functionalized with resorcinol oxidized in order to increase the photocatalytic efficiency. Photodegradation test results have confirmed this increase. Finally, synthetic nanoparticles with a waterless synthesis using formic acid and octanol, through esterification "in situ" were synthesized. Nanoparticles superficially covered by carboxylic residues able to bind a wide range of molecules to obtain further photocatalytic properties were obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil erosion is a natural geological phenomenon resulting from removal and transportation of soil particles by water, wind, ice and gravity. As soil erosion may be affected from cultural factors as well. The physical and social phenomena of soil erosion are researched in six communities in the upper part of Rio Grijalva Basin in the vicinity of Motozintla de Mendoza, Chiapas, Mexico. For this study, the USDA RUSLE model was applied to estimate soil erosion rates in the six communities based on the available data. The RUSLE model is based on soil properties, topography, and land cover and management factors. These results showed that estimated soil erosion rates ranged from a high of 2,050 metric ton ha-1 yr-1 to a low of 100 metric ton ha-1 yr-1. A survey concerning knowledge, attitudes and practices (KAP) related to soil erosion was also conducted in all 236 households in the six communities. The main findings of the KAP survey were: 69% of respondents did not know what soil erosion was, while over 40% of the population perceived that hurricanes are the biggest factors that cause soil erosion, and about 20 % of the interviewees said that the landslides are the consequences of the soil erosion. People in communities did not perceive cultural factors as important in conservation efforts for reduce vulnerability to erosion; therefore, the results obtained are suggested to be useful for informing efforts to educate stakeholders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Snow in the environment acts as a host to rich chemistry and provides a matrix for physical exchange of contaminants within the ecosystem. The goal of this review is to summarise the current state of knowledge of physical processes and chemical reactivity in surface snow with relevance to polar regions. It focuses on a description of impurities in distinct compartments present in surface snow, such as snow crystals, grain boundaries, crystal surfaces, and liquid parts. It emphasises the microscopic description of the ice surface and its link with the environment. Distinct differences between the disordered air–ice interface, often termed quasi-liquid layer, and a liquid phase are highlighted. The reactivity in these different compartments of surface snow is discussed using many experimental studies, simulations, and selected snow models from the molecular to the macro-scale. Although new experimental techniques have extended our knowledge of the surface properties of ice and their impact on some single reactions and processes, others occurring on, at or within snow grains remain unquantified. The presence of liquid or liquid-like compartments either due to the formation of brine or disorder at surfaces of snow crystals below the freezing point may strongly modify reaction rates. Therefore, future experiments should include a detailed characterisation of the surface properties of the ice matrices. A further point that remains largely unresolved is the distribution of impurities between the different domains of the condensed phase inside the snowpack, i.e. in the bulk solid, in liquid at the surface or trapped in confined pockets within or between grains, or at the surface. While surface-sensitive laboratory techniques may in the future help to resolve this point for equilibrium conditions, additional uncertainty for the environmental snowpack may be caused by the highly dynamic nature of the snowpack due to the fast metamorphism occurring under certain environmental conditions. Due to these gaps in knowledge the first snow chemistry models have attempted to reproduce certain processes like the long-term incorporation of volatile compounds in snow and firn or the release of reactive species from the snowpack. Although so far none of the models offers a coupled approach of physical and chemical processes or a detailed representation of the different compartments, they have successfully been used to reproduce some field experiments. A fully coupled snow chemistry and physics model remains to be developed.