872 resultados para signal detection theory
Resumo:
An artificial neural network (ANN) approach is proposed for the detection of workpiece `burn', the undesirable change in metallurgical properties of the material produced by overly aggressive or otherwise inappropriate grinding. The grinding acoustic emission (AE) signals for 52100 bearing steel were collected and digested to extract feature vectors that appear to be suitable for ANN processing. Two feature vectors are represented: one concerning band power, kurtosis and skew; and the other autoregressive (AR) coefficients. The result (burn or no-burn) of the signals was identified on the basis of hardness and profile tests after grinding. The trained neural network works remarkably well for burn detection. Other signal-processing approaches are also discussed, and among them the constant false-alarm rate (CFAR) power law and the mean-value deviance (MVD) prove useful.
Resumo:
This work aims the development of a dedicated system for detection of burning in surface grinding process, where the process will constantly be monitored through the acoustic emission and electric power of the induction motor drive. Acquired by an analog-digital converter, algorithms process the signals and a control signal is generated to inform the operator or interrupt the process in case of burning occurrence. Moreover, the system makes possible the process monitoring via Internet. Additionally, a comparative study between parameters DPO and FKS is carried through. In the experimental work one type of. steel (ABNT-1020 annealed) and one type of grinding wheel referred to as TARGA, model ART 3TG80.3 NVHB, were employed.
Resumo:
This work involved the development of a smart system dedicated to surface burning detection in the grinding process through constant monitoring of the process by acoustic emission and electrical power signals. A program in Visual Basic® for Windows® was developed, which collects the signals through an analog-digital converter and further processes them using burning detection algorithms already known. Three other parameters are proposed here and a comparative study carried out. When burning occurs, the newly developed software program sends a control signal warning the operator or interrupting the process, and delivers process information via the Internet. Parallel to this, the user can also interfere in the process via Internet, changing parameters and/or monitoring the grinding process. The findings of a comparative study of the various parameters are also discussed here. Copyright © 2006 by ABCM.
Resumo:
Nowadays there is great interest in structural damage detection in systems using nondestructive tests. Once the failure is detected, as for instance a crack, it is possible to take providences. There are several different approaches that can be used to obtain information about the existence, location and extension of the fault in the system by non-destructive tests. Among these methodologies, one can mention different optimization techniques, as for instance classical methods, genetic algorithms, neural networks, etc. Most of these techniques, which are based on element-byelement adjustments of a finite element (FE) model, take advantage of the dynamic behavior of the model. However, in practical situations, usually, is almost impossible to obtain an accuracy model. In this paper, it is proposed an experimental technique for damage location. This technique is based on H: norm to obtain the damage location. The dynamic properties of the structure were identified using experimental data by eigensystem realization algorithm (ERA). The experimental test was carried out in a beam structure through varying the mass of an element. For the output signal was used a piezoelectric sensor. The signal of input of sine form was generated through SignalCalc® software.
Resumo:
This paper presents a tool box developed to read files describing a SIMULINK® model and translates it into a structural VHDL-AMS description. In translation process, all files and directory structures to simulate the translated model on SystemVision™ environment is generate. The tool box named MS2SV was tested by three models of commercially available digital-to-analogue converters. All models use the R2R ladder network to conversion, but the functionality of these three components is different. The methodology of conversion of the model is presents together with sort theory about R-2R ladder network. In the evaluation of the translated models, we used a sine waveform input signal and the waveform generated by D/A conversion process was compared by FFT analysis. The results show the viability of this type of approach. This work considers some of challenges set by the electronic industry for the further development of simulation methodologies and tools in the field of mixed-signal technology. © 2007 IEEE.
Resumo:
The purpose of this paper is to introduce a new approach for edge detection in gray shaded images. The proposed approach is based on the fuzzy number theory. The idea is to deal with the uncertainties concerning the gray shades making up the image, and thus calculate the appropriateness of the pixels in relation to an homogeneous region around them. The pixels not belonging to the region are then classified as border pixels. The results have shown that the technique is simple, computationally efficient and with good results when compared with both the traditional border detectors and the fuzzy edge detectors. © 2007 IEEE.
Resumo:
An analysis of the active pixel sensor (APS), considering the doping profiles of the photodiode in an APS fabricated in a 0.18 μm standard CMOS technology, is presented. A simple and accurate model for the junction capacitance of the photodiode is proposed. An analytic expression for the output voltage of the APS obtained with this capacitance model is in good agreement with measurements and is more accurate than the models used previously. A different mode of operation for the APS based on the dc level of the output is suggested. This new mode has better low-light-level sensitivity than the conventional APS operating mode, and it has a slower temporal response to the change of the incident light power. At 1μW/cm2 and lower levels of light, the measured signal-to-noise ratio (SNR) of this new mode is more than 10 dB higher than the SNR of previously reported APS circuits. Also, with an output SNR of about 10 dB, the proposed dc level is capable of detecting light powers as low as 20 nW/cm2, which is about 30 times lower than the light power detected in recent reports by other groups. © 2007 IEEE.
Resumo:
This paper seeks to apply a routine for highways detection through the mathematical morphology tools in high resolution image. The Mathematical Morphology theory consists of describing structures geometric presents quantitatively in the image (targets or features). This explains the use of the Mathematical Morphology in this work. As high resolution images will be used, the largest difficulty in the highways detection process is the presence of trees and automobiles in the borders tracks. Like this, for the obtaining of good results through the use of morphologic tools was necessary to choose the structuring element appropriately to be used in the functions. Through the appropriate choice of the morphologic operators and structuring elements it was possible to detect the highways tracks. The linear feature detection using mathematical morphology techniques, can contribute in cartographic applications, as cartographic products updating.
Resumo:
Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse changes in structures in order to improve reliability and reduce life-cycle costs. The greatest challenge for designing a SHM system is knowing what changes to look for and how to classify them. Different approaches for SHM have been proposed for damage identification, each one with advantages and drawbacks. This paper presents a methodology for improvement in vibration signal analysis using statistics information involving the probability density. Generally, the presence of noises in input and output signals results in false alarms, then, it is important that the methodology can minimize this problem. In this paper, the proposed approach is experimentally tested in a flexible plate using a piezoelectric (PZT) actuator to provide the disturbance.
Resumo:
The purpose of this paper is to introduce a new approach for edge detection in grey shaded images. The proposed approach is based on the fuzzy number theory. The idea is to deal with the uncertainties concerning the grey shades making up the image and, thus, calculate the appropriateness of the pixels in relation to a homogeneous region around them. The pixels not belonging to the region are then classified as border pixels. The results have shown that the technique is simple, computationally efficient and with good results when compared with both the traditional border detectors and the fuzzy edge detectors. Copyright © 2009, Inderscience Publishers.
Resumo:
Optical remote sensing techniques have obvious advantages for monitoring gas and aerosol emissions, since they enable the operation over large distances, far from hostile environments, and fast processing of the measured signal. In this study two remote sensing devices, namely a Lidar (Light Detection and Ranging) for monitoring the vertical profile of backscattered light intensity, and a Sodar (Acoustic Radar, Sound Detection and Ranging) for monitoring the vertical profile of the wind vector were operated during specific periods. The acquired data were processed and compared with data of air quality obtained from ground level monitoring stations, in order to verify the possibility of using the remote sensing techniques to monitor industrial emissions. The campaigns were carried out in the area of the Environmental Research Center (Cepema) of the University of São Paulo, in the city of Cubatão, Brazil, a large industrial site, where numerous different industries are located, including an oil refinery, a steel plant, as well as fertilizer, cement and chemical/petrochemical plants. The local environmental problems caused by the industrial activities are aggravated by the climate and topography of the site, unfavorable to pollutant dispersion. Results of a campaign are presented for a 24- hour period, showing data of a Lidar, an air quality monitoring station and a Sodar. © 2011 SPIE.
Resumo:
This paper presents a control method that is effective to reduce the degenerative effects of delay time caused by a treacherous network. In present application a controlled DC motor is part of an inverted pendulum and provides the equilibrium of this system. The control of DC motor is accomplished at the distance through a treacherous network, which causes delay time in the control signal. A predictive technique is used so that it turns the system free of delay. A robust digital sliding mode controller is proposed to control the free-delay system. Due to the random conditions of the network operation, a delay time detection and accommodation strategy is also proposed. A computer simulation is shown to illustrate the design procedures and the effectiveness of the proposed method. © 2011 IEEE.
Resumo:
This paper describes the optimisation and the analytical performances of a label-free impedimetric immunosensor for the detection of tumour marker CA125 based on gold nanoparticles modified screen-printed graphite electrode. Experimental conditions of each step for the developed immunosensor were studied and optimised. The immunosensor response varied linearly (r2 = 0.996) with antigen concentration between 0 and 100 U/mL. The estimated detection limit was 6.7 U/mL. The electrochemical immunosensor allowed unambiguous identification of CA125, while no significant non-specific signal was detected in the case of all negative controls. The analytical usefulness of the impedimetric immunosensor was finally demonstrated analysing serum samples. © 2012 Elsevier B.V. All rights reserved.
Resumo:
The inelastic scattering of light, Raman scattering, presents a very low cross section. However, the signal can be amplified by several orders of magnitude, leading to the so-called surface-enhanced Raman scattering (SERS) phenomenon. Basically, the SERS effect is achieved when the target molecule (analyte) is adsorbed onto metallic nanoparticles, usually noble metals. This article presents an overview of the applications of SERS to cancer diagnosis and the detection of pesticides, explosives, and drugs (illicit and pharmacological). SERS is routinely applied nowadays to detect and identify analytes at very low concentrations, including for single-molecule detection. However, the application of SERS as an analytical tool requires reliable and reproducible SERS substrates, in terms of enhancement factors, which depends on the size, shape, and aggregation of the metallic nanoparticles. Therefore, the production of reliable and reproducible SERS substrates is a challenge in the field. Besides, the metallic nanoparticles can also induce changes in the system by possible interactions with the analyte under investigation, which must be taken into account. This review will present work in which, under certain specific experimental conditions, SERS has been analytically applied.
Resumo:
Multisensor data fusion is a technique that combines the readings of multiple sensors to detect some phenomenon. Data fusion applications are numerous and they can be used in smart buildings, environment monitoring, industry and defense applications. The main goal of multisensor data fusion is to minimize false alarms and maximize the probability of detection based on the detection of multiple sensors. In this paper a local data fusion algorithm based on luminosity, temperature and flame for fire detection is presented. The data fusion approach was embedded in a low cost mobile robot. The prototype test validation has indicated that our approach can detect fire occurrence. Moreover, the low cost project allow the development of robots that could be discarded in their fire detection missions. © 2013 IEEE.